Electronic Supplementary Information

Enhanced acetone sensing performance of Au nanoparticles modified porous tube-like ZnO derived from rod-like ZIF-L

Huifen Fu, ^a Xun Wang, ^a Peng Wang, ^a Zhihua Wang ^{*b}, Hang Ren, ^a Chong-Chen Wang ^{*a}

^a Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, China

^b State Key Laboratory of Chemical Resource, Beijing University of Chemical Technology, Beijing 100029, China

Email: <u>zhwang@mail.buct.edu.cn</u>; <u>chongchenwang@126.com</u>

Fig. S1 (a) Nitrogen adsorption-desorption isotherms and (b) pore size distributions of PP-ZnO and PT-ZnO

Samples	Sa
PP-ZnO	9.7
PT-ZnO	12.8
Au/PP-ZnO	11.8
Au/PT-ZnO	14.1

Table S1 Specific surface areas of PP-ZnO and PT-ZnO

Table S2 Comparison of acetone sensing performances of Au-based sensing materials previously reported in literature

Sensing materials	Response (R_a/R_g)	Working temperature (°C)	Concentration (ppm)	Ref.
Porous tube-like Au/ZnO	6.2	190	5	This work
Porous tube-like Au/ZnO	115	190	50	This work
Porous tube-like Au/ZnO	280	190	100	This work
Porous tube-like Au/ZnO	490	190	200	This work
Au/WO ₃ nanorod	131.26	300	200	[48]
Au@ZnO	32	400	100	[49]
Au-loaded NiO	15.3	240	100	[50]
Au nanoparticles functionalized flower-like ZnO	74.41	270	100	[51]
SnO ₂ /Au-doped In ₂ O ₃ core-shell nanofibers	20.9	280	100	[52]
Au/In ₂ O ₃ nanorods	44.3	215	50	[53]
Au@ZnO yolk-shell nanosphere	37	300	100	[54]
Porous Au/ZnO nanoparticles	17.1	275	1 ppm	[55]
Core-shell Au@ZnO nanoparticles	21	300	5 ppm	[56]

Fig. S2 Response-recovery curves to different acetone of these samples: (a) 12.5 ppm, (b) 25 ppm, (c) 50 ppm, (d) 100 ppm and (e) 200 ppm

	PP-Z	ZnO	PT-ZnO		Au/PP-ZnO		Au/PT-ZnO	
Concentration	Response time	Recovery time	Response time	Recovery time	Response time	Recovery time	Response time	Recovery time
12.5 ppm	17	79	17	89	15	56	2	53
25 ppm	18	71	18	105	16	60	2	61
50 ppm	11	94	14	130	11	84	3	74
100 ppm	4	158	2	138	3	93	2	92
200 ppm	7	203	3	253	3	228	2	223

Table S3 Response time and recovery time of PP-ZnO, PT-ZnO, Au/PP-ZnO and Au/PT-ZnO to acetone with different concentrations

Table S4 Comparison of relative amount of oxygen species for PP-ZnO, PT-ZnO, Au/PP-ZnO and Au/PT-ZnO obtained from O1s XPS spectra

Samples		OI		OII		
	Peak (eV)	Content (%)	Peak (eV)	content (%)		
Au/PT-ZnO	529.7	34.3	531.8	65.7		
Au/PP-ZnO	529.8	66.2	531.3	33.8		
PT-ZnO	529.8	69.5	531.5	30.5		
PP-ZnO	529.8	71.0	531.5	29.0		

References

- 48. S. Kim, S. Park, S. Park and C. Lee, Sensor. Actuat. B, 2015, 209, 180.
- 49. Z. Feng, Y. Ma, V. Natarajan, Q. Zhao, X. Ma and J. Zhan, Sensor. Actuat. B, 2018, 255, 884.
- 50. L. Wang, Z. Lou, T. Fei and T. Zhang, Sensor. Actuat. B, 2012, 161, 178.
- 51. X. J. Wang, W. Wang and Y. L. Liu, Sensor. Actuat. B, 2012, 168, 39.
- 52. F. Li, T. Zhang, X. Gao, R. Wang and B. Li, Sensor. Actuat. B, 2017, 252, 822.
- 53. R. Xing, L. Xu, J. Song, C. Zhou, Q. Li, D. Liu and H. Song, Sci. Rep., 2015, 5, 10717.
- 54. X. Li, X. Zhou, H. Guo, C. Wang, J. Liu, P. Sun, F. Liu and G. Lu, ACS Appl. Mater. Interfaces, 2014, 6, 18661.

55. J. Xia, K. Diao, Z. Zheng and X. Cui, RSC Adv., 2017, 7, 38444.

56. W. Li, X. Wu, N. Han, J. Chen, W. Tang and Y. Chen, Powder Technol., 2016, 304, 241.