Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2018

SUPPLEMENTARY INFORMATION

G. Albertin et al., Preparation and Reactivity of Half-Sandwich Organic Azide Complexes of

Osmium

Figure S1. IR spectra of in KBr the labelled $[Os(\eta^5-C_5H_5)(\kappa^{1}-{}^{15}N_3CH_2C_6H_4-4-CH_3)(PPh_3)-$ {P(OMe)₃}]BPh₄ (**1b**₁) and unlabelled compound $[Os(\eta^5-C_5H_5)(\kappa^1-N_3CH_2C_6H_4-4-CH_3)(PPh_3)-$ {P(OMe)₃}]BPh₄ (**1b**).

G. Albertin *et al.*, Preparation and Reactivity of Half-Sandwich Organic Azide Complexes of Osmium

Figure S2. IR spectra of in KBr the labelled $[Os(\eta^5-C_5H_5)\{\kappa^{1-15}N_3C(H)(CH_3)C_6H_5\}-(PPh_3)\{P(OMe)_3\}]BPh_4$ (1c₁) and unlabelled compound $[Os(\eta^5-C_5H_5)\{\kappa^1-N_3C(H)(CH_3)C_6H_5\}-(PPh_3)\{P(OMe)_3\}]BPh_4$ (1c).

G. Albertin et al., Preparation and Reactivity of Half-Sandwich Organic Azide Complexes of

Osmium

Figure S3. ¹H NMR spectra of complex $[Os(\eta^5-C_5H_5)\{\kappa^{1-15}NH=C(CH_3)C_6H_4-4-CH_3\}(PPh_3)-\{P(OMe)_3\}]BPh_4$ (**3b**₁) in CD₂Cl₂ at 295 K. Lower, experimental; upper, simulated (see parameters in Experimental section).

G. Albertin et al., Preparation and Reactivity of Half-Sandwich Organic Azide Complexes of

Figure S4. ¹H NMR spectra of complex $[Os(\eta^5-C_5H_5)\{\kappa^{1-15}NH=C(CH_3)C_6H_5\}(PPh_3)-\{P(OEt)_3\}]BPh_4$ (**4c**₁) in CD₂Cl₂ at 295 K. Lower, experimental; upper, simulated (see parameters in Experimental section).

G. Albertin et al., Preparation and Reactivity of Half-Sandwich Organic Azide Complexes of

Osmium

Figure S5. Proton-coupled ¹⁵N NMR spectra of complex $[Os(\eta^5-C_5H_5)\{\kappa^{1-15}NH=C(CH_3)C_6H_5\}$ -(PPh₃){P(OEt)₃}]BPh₄ (**4c**₁) in CD₂Cl₂. Lower, experimental; upper, simulated (see parameters in Experimental section).