Electronic Supplementary Information

Rational Design and Synthesis of Highly Oriented Copper-Zinc Ferrite QDs/Titania NAEs Nano-Heterojuncted Composites with Novel Photoelectrochemical and Photoelectrocatalytic Behavior

Shiying Fan^a, Xinyong Li, *^{a,b}, Qidong Zhao ^a, Libin Zeng ^a, Mingmei Zhang ^a, Zhifan Yin ^a, Tingting Lian ^a, Moses O. Tadé ^b, Shaomin Liu ^b

^aState Key Laboratory of Fine Chemicals, Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China;

^bDepartment of Chemical Engineering, Curtin University, Perth, WA 6845, Australia.

The supporting information contains a total of 12 figures.

Fig.S1 Standard curve of Methylene Blue (a) and Sulfamethoxazole (b)

Fig. S2 SEM images of the $Cu_{0.5}Zn_{0.5}Fe_2O_4$ QDs/TiO₂ composite NAEs prepared by different concentration of precursor. (a) 0 M (b) 0.06M (c) 0.1M (d) 0.14M. (Experimental parameters: impregnation time = 10 min, vacuum pressure= 1×10^{-3} Pa, cycles = 10 repetitions, pH=9)

Fig. S3 SEM images of the $Cu_{0.5}Zn_{0.5}Fe_2O_4$ QDs/TiO₂ NAEs nanocomposites prepared by different pH of precursor. (a) pH=0 (b) pH=3 (c) pH=5 (d) pH=7 (e) pH=9 (f) pH=11. (Experimental parameters: impregnation time = 10 min, vacuum pressure= 1×10^{-3} Pa, concentration = 0.05 M Cu(NO₃)₂·6H₂O, 0.05 M Zn(NO₃)₂·6H₂O and 0.2 M Fe(NO₃)₃·9H₂O, cycles = 5 repetitions)

Fig. S4 SEM images of the $Cu_{0.5}Zn_{0.5}Fe_2O_4$ QDs/TiO₂ NAEs nanocomposites prepared by different deposition cycles. (a) 0 repetitions, (b) 1 repetitions, (c) 3 repetitions, (d) 5 repetitions, (d) 7 repetitions, (d) 9 repetitions. (Experimental parameters: impregnation time = 10 min, vacuum pressure= 1×10^{-3} Pa, concentration = 0.05 M Cu(NO₃)₂·6H₂O, 0.05 M Zn(NO₃)₂·6H₂O and 0.2 M Fe(NO₃)₃·9H₂O, pH = 9)

Fig. S5 XPS survey spectrum (a) and high-resolution XPS spectra of Ti 2p (b), Fe 2P (c), Cu 2p (d), Zn 2p (E) and O 1s (f) for $Cu_{0.5}Zn_{0.5}Fe_2O_4$ QDs/TiO₂-NAEs nanocomposites

Fig. S6 Photocurrent density *vs.* applied potential (*vs.* SCE) of $Cu_{0.5}Zn_{0.5}Fe_2O_4$ QDs/TiO₂-NAEs nanocomposites under visible light irradiation with different concentration of precursor. (black: 0 M, red: 0.06M, pink: 0.1M, blue: 0.14M).

Fig. S7 Photocurrent density *vs.* applied potential (*vs.* SCE) of $Cu_{0.5}Zn_{0.5}Fe_2O_4$ QDs/TiO₂-NAEs under visible light irradiation with different pH values. (black: pH=0, blue: pH=3, pink: pH=5, green: pH=7, red: pH=9, dark blue: pH=11).

Fig. S8 Photocurrent density vs. applied potential (vs. SCE) of $Cu_{0.5}Zn_{0.5}Fe_2O_4$ QDs/TiO₂-NAEs nanocomposites under visible light irradiation with different deposition cycles. (black: 0 times, red: 1 times, blue: 3 times, green: 5 times, pink: 7 times, brown: 9 times)

Fig. S9 The concentration vs. time plotted for photoelectrocatalytic degradation of MB by TiO₂ NAEs and Cu_{0.5}Zn_{0.5}Fe₂O₄ QDs/TiO₂ NAEs in different processes under visible light irradiation: (a), (c) (I₀ = 30 mW cm⁻², 0.6 V ν s. SCE, C₀ = 20 mg L⁻¹) and simulated sunlight irradiation (b), (d) (I₀ = 33 mW cm⁻², 0.6 V ν s. SCE, C₀ = 20 mg L⁻¹).

Fig. S10 Band structures of TiO₂ and Cu_{0.5}Zn_{0.5}Fe₂O₄/TiO₂, and the redox potential of each ROS

Fig. S11 HPLC graphs of the MB solution at different reaction times. Conditions: MB, 20 mg L⁻¹ (initial concentration).

Fig. S12 MS-MS graphs in the positive ion mode for monitoring the degradation of the MB solutions.