Electronic supplementary information (ESI)

## Pt…Pt interaction triggered tuning of circularly polarized luminescence activity in chiral dinuclear platinum(II) complexes

Xiao-Peng Zhang,<sup>\*</sup>a Li-Li Wang,<sup>a</sup> Xiao-Wei Qi,<sup>a</sup> Da-Shuai Zhang,<sup>a</sup> Qian-Ying Yang,<sup>a</sup> Zai-Feng Shi,<sup>\*</sup>a Qiang Lin,<sup>a</sup> and Tao Wu,<sup>\*b</sup>

<sup>a</sup> College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, People's Republic of China. E-mail: zxp\_inorganic@126.com; zaifengshi\_hnnu@sina.com.

<sup>b</sup> Institute of Organic Chemistry and Biochemistry, Academy of Sciences, Flemingovo náměstí 2, 16610 Prague 6, Czech Republic. E-mail: wu@uochb.cas.cz.

## Table of contents

| Table S1. Structural parameters of complexes (-)-1, (+)-1 and (-)-2-ClO <sub>4</sub> -Cl | S3  |
|------------------------------------------------------------------------------------------|-----|
| Table S2. Spectroscopic and photophysical data for $(-)-1$ and $(-)-2$                   | S4  |
| Fig. S1 The <sup>1</sup> H NMR spectrum of (−)-1                                         | S5  |
| Fig. S2 The <sup>13</sup> C NMR spectrum of (−)-1                                        | S5  |
| Fig. S3 The <sup>13</sup> C/DEPT 135 <sup>o</sup> NMR spectrum of (−)-1                  | S6  |
| Fig. S4 The <sup>13</sup> C/DEPT 90° NMR spectrum of (-)-1                               | S6  |
| Fig. S5 The <sup>1</sup> H - <sup>1</sup> H COSY NMR spectrum of (-)-1                   | S7  |
| Fig. S6 The HSQC NMR spectrum of (-)-1                                                   | S7  |
| Fig. S7 The HMBC NMR spectrum of (−)-1                                                   | S8  |
| Fig. S8 The <sup>1</sup> H - <sup>1</sup> H NOESY NMR spectrum of (-)-1                  | S8  |
| Fig. S9 The <sup>1</sup> H NMR spectrum of (−)-2                                         | S9  |
| Fig. S10 The <sup>13</sup> C NMR spectrum of (-)-2                                       | S9  |
| Fig. S11 The <sup>13</sup> C/DEPT 135 <sup>o</sup> NMR spectrum of (-)-2                 | S10 |
| Fig. S12 The <sup>13</sup> C/DEPT 90° NMR spectrum of (-)-2                              | S10 |
| Fig. S13 The <sup>1</sup> H - <sup>1</sup> H COSY NMR spectrum of (-)-2                  | S11 |
| Fig. S14The HSQC NMR spectrum of (-)-2                                                   | S11 |
| Fig. S15 The HMBC NMR spectrum of (−)-2                                                  | S12 |
| Fig. S16 The <sup>1</sup> H - <sup>1</sup> H NOESY NMR spectrum of (-)-2                 | S12 |
| Fig. S17 X-ray crystal structures of (-)-1 and (+)-1                                     | S13 |
| Fig. S18 Intermolecular Pt…Pt separation of (-)-1                                        | S13 |

| Fig. S19 Intermolecular Pt…Pt separation of (−)-2-ClO <sub>4</sub> -Cl                  | S13 |
|-----------------------------------------------------------------------------------------|-----|
| Fig. S20 Emission spectra of (-)-1 and (-)-2 at 298 and 77 K                            | S14 |
| Fig. S21 Emission and excitation of (-)-(C^N^N)PtCl, (-)-1 and (-)-2 in dichloromethane | S14 |
| Fig. S22 Emission and excitation of (-)-1 in different solvents                         | S15 |
| Fig. S23 Emission and excitation of (−)-2 in different solvents                         | S15 |

 Table S1. Structural parameters of complexes (-)-1, (+)-1 and (-)-2-ClO<sub>4</sub>-Cl determined by X-ray single crystal diffraction.

| Bond Length         | (−)- <b>1</b> | (+)-1         | (−)- <b>2</b> -ClO <sub>4</sub> -Cl |
|---------------------|---------------|---------------|-------------------------------------|
| Pt1-C1 (C1A)        | 2.023(12)     | 2.024(10)     | 2.024(10)                           |
| Pt2-C2 (C1B)        | 2.027(12)     | 2.024(11)     | 1.993(10)                           |
| Pt1-N1 (N1A)        | 2.024(9)      | 2.017(8)      | 2.020(8)                            |
| Pt1-N2 (N2A)        | 2.189(9)      | 2.190(8)      | 2.147(8)                            |
| Pt2-N3 (N1B)        | 2.027(9)      | 2.029(8)      | 2.018(8)                            |
| Pt2-N4 (N2B)        | 2.161(10)     | 2.171(8)      | 2.140(8)                            |
| Pt1-P1 (P1A)        | 2.252(3)      | 2.251(2)      | 2.250(3)                            |
| Pt2-P2 (P1B)        | 2.257(3)      | 2.259(2)      | 2.242(3)                            |
| Pt3-C1C             |               |               | 2.028(10)                           |
| Pt4-C1D             |               |               | 2.022(10)                           |
| Pt3-P1C             |               |               | 2.241(3)                            |
| Pt4-P1D             |               |               | 2.238(3)                            |
| Pt3-N1C             |               |               | 2.008(9)                            |
| Pt3-N2C             |               |               | 2.143(8)                            |
| Pt4-N1D             |               |               | 2.013(9)                            |
| Pt4-N2D             |               |               | 2.138(9)                            |
| Bond Angles         | (−)- <b>1</b> | (+)- <b>1</b> | (−)- <b>2</b> -ClO <sub>4</sub> -Cl |
| C1(C1A)-Pt1-N1(N1A) | 80.4(4)       | 80.6(4)       | 82.2(4)                             |
| C1(C1A)-Pt1-N2(N2A) | 157.8(4)      | 157.6(4)      | 158.9(4)                            |
| N1(N1A)-Pt1-N2(N2A) | 77.5(4)       | 76.9(3)       | 76.9(3)                             |
| C1(C1A)-Pt1-P1(P1A) | 96.0(3)       | 95.8(3)       | 95.3(3)                             |
| N1(N1A)-Pt1-P1(P1A) | 175.1(3)      | 174.8(3)      | 176.2(2)                            |
| N2(N2A)-Pt1-P1(P1A) | 106.1(2)      | 106.5(2)      | 105.7(2)                            |
| N3(N1B)-Pt2-C2(C1B) | 80.9(5)       | 81.0(4)       | 81.6(4)                             |
| N3(N1B)-Pt2-N4(N2B) | 76.9(4)       | 77.1(4)       | 77.8(4)                             |
| C2(C1B)-Pt2-N4(N2B) | 157.6(4)      | 157.9(4)      | 159.0(4)                            |
| N3(N1B)-Pt2-P2(P1B) | 175.5(3)      | 175.3(3)      | 172.2(2)                            |
| C2(C1B)-Pt2-P2(P1B) | 95.4(4)       | 95.3(3)       | 95.8(3)                             |
| N4(N2B)-Pt2-P2(P1B) | 106.5(3)      | 106.4(2)      | 105.1(3)                            |
| C1C-Pt3-N1C         | _             |               | 81.9(4)                             |
| C1C-Pt3-N2C         |               |               | 159.6(4)                            |
| N1C-Pt3-N2C         |               |               | 77.9(3)                             |
| C1C-Pt3-P1C         |               |               | 96.6(3)                             |
| N1C-Pt3-P1C         |               |               | 173.2(2)                            |

| N2C-Pt3-P1C | 103.9(2)  |
|-------------|-----------|
| C1D-Pt4-N1D | - 81.7(4) |
| C1D-Pt4-N2D | 159.6(4)  |
| N1D-Pt4-N2D | 78.1(4)   |
| C1D-Pt4-P1D | 96.5(3)   |
| N1D-Pt4-P1D | 171.8(2)  |
| N2D-Pt4-P1D | 103.9(3)  |
|             |           |

**Table S2**. Spectroscopic and photophysical data for (-)-1 and (-)-2 (5×10<sup>-5</sup> mol·L<sup>-1</sup>).

| Complex       | UV-vis <sup>a</sup>                                                | Emission <sup>a</sup>                                  | Emission <sup>b</sup>           |
|---------------|--------------------------------------------------------------------|--------------------------------------------------------|---------------------------------|
|               | $\lambda_{\max}$ , nm                                              | $\lambda_{\max}$ , nm ( $	au$ /ns, $oldsymbol{\Phi}$ ) | $\lambda_{ m max}$ , nm at 77 K |
|               | (ε, 10 <sup>4</sup> L·mol⁻¹·cm⁻¹)                                  | at 298 K                                               |                                 |
| (−)-1         | 256 (46600), 345 (16000), 423<br>(3300), 479 (1800), 510 (1000)    | 547, 638 (248, 0.11)                                   | 620                             |
| (-)- <b>2</b> | 255 (60700), 273 (50800), 339<br>(23900), 354 (23500), 420 (1800), | 530 (814, 0.15), 563                                   | 519, 559                        |
|               | 475 (220), 500 (70)                                                |                                                        |                                 |

 $^{\rm a}$  Measured in CH\_2Cl\_2 solution.  $^{\rm b}$  Measured in MeOH/EtOH (1/4, v/v) glassy solution.



Fig. S1 The <sup>1</sup>H NMR spectrum of (-)-1.



Fig. S2 The <sup>13</sup>C NMR spectrum of (-)-1.







Fig. S5 The  $^{1}H$  –  $^{1}H$  COSY NMR spectrum of (–)-1.



Fig. S6 The HSQC NMR spectrum of (-)-1.



Fig. S7 The HMBC NMR spectrum of (-)-1.



**Fig. S8** The  $^{1}H$  –  $^{1}H$  NOESY NMR spectrum of (–)-1.



Fig. S10 The  $^{13}$ C NMR spectrum of (-)-2.





S10



Fig. S13 The  $^{1}H$  –  $^{1}H$  COSY NMR spectrum of (-)-2.



Fig. S14 The HSQC NMR spectrum of (-)-2.



Fig. S15 The HMBC NMR spectrum of (-)-2.



Fig. S16 The  $^{1}H$  –  $^{1}H$  NOESY NMR spectrum of (–)-2.



**Fig. S17** X-ray crystal structures of (-)-1 and (+)-1. H atoms, solvent molecules as well as anions are omitted for clarity.



**Fig. S18** Intermolecular Pt···Pt separation between the nearest discrete [(-)-(C^N^N)Pt]<sub>2</sub>dppm<sup>2+</sup> units of (-)-1.



Fig. S19 Intermolecular  $Pt \cdots Pt$  separation between the nearest discrete  $[(-)-(C^N^N)Pt]_2dppe^{2+}$  units of  $(-)-2-CIO_4-CI$ .



Fig. S20 Emission spectra of (-)-1 and (-)-2 at 298 (solid line) and 77 K (dash line) ( $\lambda_{ex}$  = 420 nm)



**Fig. S21** Normalized emission (line,  $\lambda_{ex} = 420$  nm) and excitation (symbol + line, monitored at emission maximum) of (-)-(C^N^N)PtCl, (-)-1 and (-)-2 in dichloromethane.



**Fig. S22** Normalized emission (line,  $\lambda_{ex} = 420$  nm) and excitation (symbol + line, monitored at emission maximum) of (-)-1 in different solvents.



**Fig. S23** Normalized emission (line,  $\lambda_{ex} = 420$  nm) and excitation (symbol + line, monitored at emission maximum) of (-)-2 in different solvents.