Electronic Supplementary Information

A versatile chemosensor for detection of Al³⁺ and Picric acid (PA) in aqueous solution

Barnali Naskar,^a Antonio Bauzá,^b Antonio Frontera,^b Dilip K. Maiti,^a Chitrangada Das Mukhopadhyay^c and Sanchita Goswami^{*,a}

^aDepartment of Chemistry, University of Calcutta, 92, A. P. C. Road, Kolkata – 700009, India *E-mail: sgchem@caluniv.ac.in*

^bDepartament de Química, Universitat de les IllesBalears, Crta. deValldemossa km 7.5, 07122 Palma de Mallorca, Baleares, Spain

^cCentre for Healthcare Science & Technology, Indian Institute of Engineering Science and Technology, Shibpur Howrah711103, India.

Contents of the Supporting Information

1. Characterization and Structural Data.

Figure S1. ¹H and ¹³C-NMR spectrum of H_2Vm .

Figure S2. FT–IR Spectrum of H_2Vm , complex 1 and PA complex (2).

Figure S3. ESI–MS of H_2Vm , complex 1 and PA complex (2) in methanol solution.

Figure S4. ¹H–NMR titration of H₂Vm with Al(NO₃)₃.9H₂O in DMSO–d₆ solution.

Figure S5. ¹³C–NMR titration of **H**₂**Vm** with Al(NO₃)₃.9H₂O in DMSO–d₆ solution.

Figure S6. ¹H–NMR titration of complex 1 with Picric acid (PA) in DMSO–d₆ solution.

Table S1. ¹H–NMR shift data of NMR titration experiment of H₂Vm.

2. PhotophysicalCharacterization

Figure S7. Job's plot for determination of stoichiometry of Al^{3+} : H_2Vm complex in solution.

Figure S8. Absorbance spectra of H_2Vm in MeOH solution.

Figure S9. Absorbance spectra of H_2Vm HEPES buffer (pH = 7.4) solution.

Figure S10. Absorbance spectra of H_2Vm in the presence of various metal ions.

Figure S11. Benesi–Hildebrand plot of absorbance titration curve of H_2Vm and Al^{3+} ion.

Figure S12. Emission spectra of H_2Vm in the presence of [Al³⁺] in HEPES buffer (pH = 7.4) solution (λ_{ex} = 400 nm, λ_{em} = 488 nm).

Figure S13. Emission spectra of H_2Vm in the presence of [Al³⁺] in HEPES buffer (pH = 7.4) solution (λ_{ex} = 450 nm, λ_{em} = 488 nm).

Figure S14. Emission spectra of H_2Vm in MeOH solution.

Figure S15. Emission spectra of H_2Vm HEPES buffer (pH = 7.4) solution.

Figure S16. Excitation spectra of H_2Vm in MeOH solution.

Figure S17. Excitation spectra of H_2Vm HEPES buffer (pH = 7.4) solution.

Figure S18. Visual color change observed with the addition of various cations to H_2Vm as seen under UV light ($\lambda = 365$ nm).

Figure S19. Benesi-Hildebrand plot of fluorescence titration curve of H₂Vm and Al³⁺.

Figure S20. Detection Limit of H_2Vm for Al^{3+} ion.

Figure S21. Fluorescence emission spectra of H_2Vm in the presence of Al^{3+} ion followed by addition of EDTA.

Figure S22. Time-resolved fluorescence decay of H_2Vm and presence of added Al³⁺ in solution.

Figure S23. Emission intensity of H_2Vm in absence and in presence of Al^{3+} ion at different pH values in solution.

Figure S24. Absorbance spectra of Complex 1 upon titration with PA.

Figure S25. The limit of detection (LOD) of Complex 1 for PA as a function of PA concentration.

Figure S26. Job's plot for the identification of Complex 1-PA (1:2) complex stoichiometry using absorbance values.

Figure S27. Stern–Volmer plot of fluorescence quenching for complexation between complex 1 and PA derived from emission titration curve.

Figure S28. Time-resolved fluorescence decay of Complex 1 with PA in solution.

Table S2. Fluorescence lifetime measurement of chemosensor H_2Vm , complex 1 and complex 2 in aqueous solution.

Table S3. Stability constant was compared with complexation properties of the other metal ions.

3. Theoretical Data

Table S4. Selected parameters for the vertical excitation (UV-vis absorption) of H_2Vm (bis-keto form), electronic excitation energy (eV) and oscillator strength (*f*), and composition of the low-lying excited state of H_2Vm .

Table S5. Selected parameters for the vertical excitation (UV-vis absorptions) and the emission of Al_2-Vm_2 , electronic excitation energies (eV) and oscillator strengths (*f*) and contributions of the lowest lying excited state.

Figure S29. Theoretical UV spectrum of Al₂-Vm₂.

4. Cell Study

Figure S30. Cell viability curve of ligand H₂Vm.

5. Cartesian Coordinates

Cartesian coordinates of the enol, Keto and Keto-enol tautomers and the complexes 1 and 2

¹H and ¹³C-NMR spectra: H_2Vm were dissolved in d_6 -DMSO and recorded with TMS as internal standard on a Bruker, AV 300 Supercon Digital NMR system.

Figure S1. ¹H and ¹³C-NMR spectrum of chemosensor H_2Vm .

FT–IR spectroscopy: Fourier transform infrared (FT-IR) spectra were recorded with a Perkin–Elmer RXI FT-IR spectrophotometer using the reflectance technique (4000–400 cm⁻¹). Samples were prepared as KBr disks.

Figure S2. FT-IR Spectrum of H₂Vm, [Al₂-Vm₂] complex 1 and [Al₂-Vm₂].PA complex 2.

Electrospray ionization mass spectra (HR–ESI–MS) were recorded on Qtof Micro YA263 mass spectrometer dissolving the samples in LC–MS quality MeOH.

Figure S3. ESI-MS of ligand (H_2Vm) , $[Al_2-Vm_2]$ complex 1 and $[Al_2-Vm_2]$. PA complex 2.

Figure S4. ¹H–NMR titration of **H**₂**Vm** with Al(NO₃)₃.9H₂O in DMSO–d₆ solution.

Figure S5. ¹³C–NMR titration of H_2Vm with Al(NO₃)₃.9H₂O in DMSO–d₆ solution.

Figure S6. ¹H–NMR titration of complex 1 with Picric acid (PA) in DMSO–d₆ solution.

Table S1. ¹H and ¹³C-NMR shift data of NMR titration experiment of H_2Vm .

	$^{1}\mathrm{H}$						
Proton	Free	$H_2Vm + 0.5$ equiv.	$H_2Vm + 1.0$ equiv.	$H_2Vm + 1.5$ equiv.	$H_2Vm + 2.0$ equiv.	Shift	
label	H ₂ Vm	$Al(NO_3)_3.9H_2O(ppm)$	$Al(NO_3)_3.9H_2O(ppm)$	$Al(NO_3)_3.9H_2O(ppm)$	$Al(NO_3)_3.9H_2O(ppm)$	(E-A)	
	(nnm)	(B)	(\mathbf{C})		(E)	(nnm)	
	(A)		(0)			(PP)	
Ha	13.655	-	-	-	-	-	
H _b	8.412	10.161	10.164	10.170	10.176	1.764	
						downfield	
			110				
			¹³ C				
C_a	151.83	151.97	168.89	169.06	169.09	17.26	
						downfield	
C _b	166.73	166.96	187.56	191.63	191.67	24.94	
						downfield	

Figure S7. Job's plot for the identification of (1:1) complex stoichiometry between H_2Vm and Al^{3+} using absorbance values at 368 nm.

Figure S8. Absorbance spectra of H_2Vm in methanol solution.

Figure S9. Absorbance spectra of H_2Vm in HEPES buffer (pH = 7.4) solution.

Figure S10. Absorbance spectra of H_2Vm (5×10⁻⁷ M) in HEPES buffer (pH = 7.4) solution in the presence different metal ions like Al³⁺, Li⁺, Na⁺, K⁺, Ca²⁺, Mg²⁺, Mn²⁺, Ba²⁺, Cu²⁺, Ni²⁺, Co²⁺, Fe²⁺, Fe³⁺, Zn²⁺, Cd²⁺, Hg²⁺, Pb²⁺, Sr²⁺ and Cr³⁺. **Inset:** Visual color change observed with addition of different metal ions to H_2Vm solution.

The binding constant (*K*) determined by the Benesi–Hildebrand expression was found to be 5.23 \times 10⁵ M⁻¹.

$$\frac{1}{(A-A_0)} = \frac{1}{\{K(A_{max} - A_0)[C]\}} + \frac{1}{(A_{max} - A_0)}$$

Where A_0 is the absorbance of free ligand, A is the observed absorbance at that particular wavelength in the presence of a certain concentration of the metal ion [C], A_{max} is the maximum absorbance value of the complex formed. K is the association constant (M⁻¹) and was determined from the slope of the linear plot and [C] is the concentration of the Al³⁺ ion added during titration studies. The goodness of the linear fit of the B–H plot of $1/(A - A_0)$ vs. $1/[Al^{3+}]$ for 1:1 complex formation confirms the binding stoichiometry between H₂Vm and Al³⁺.

Figure S11. Benesi-Hildebrand plot of absorbance titration curve of H₂Vm and [Al³⁺].

Figure S12. Emission spectra of H_2Vm in the presence of [Al³⁺] in HEPES buffer (pH = 7.4) solution (λ_{ex} = 400 nm, λ_{em} = 488 nm).

Figure S13. Emission spectra of H_2Vm in the presence of [Al³⁺] in HEPES buffer (pH = 7.4) solution (λ_{ex} = 450 nm, λ_{em} = 488 nm).

Figure S14. Emission spectra of H_2Vm in methanol solution.

Figure S15. Emission spectra of H_2Vm in HEPES buffer (pH = 7.4) solution.

Figure S16. Excitation spectra of H_2Vm in methanol solution.

Figure S17. Excitation spectra of H_2Vm in HEPES buffer (pH = 7.4) solution.

Figure S18. Visual color change observed with addition of different metal ions to H_2Vm as seen under UV light ($\lambda = 365$ nm).

According to the linear Benesi–Hildebrand expression, the measured fluorescence intensity $(F - F_0)/(F_x - F_0)$ at 488 nm varied as a function of $1/[Al^{3+}]$ in a linear relationship, which indicates the formation of 1 : 1 stoichiometry between Al³⁺ and **H₂Vm** in the complex.

$$\frac{1}{F_X - F_0} = \frac{1}{F_{max} - F_0} + \frac{1}{K[C]} \left(\frac{1}{F_{max} - F_0}\right)$$

where F_0 , F_x and F_{max} are the emission intensities of organic moiety considered in the absence of Al³⁺ ions, at an intermediate Al³⁺ concentration and at a concentration of complete interaction, respectively, *K* is the binding constant and *[C]* is the concentration of Al³⁺ ions.

Figure S19. Benesi-Hildebrand plot $[(F-F_0)/(F_x-F_0)]$ vs. $1/[Al^{3+}]$ for complexation between H_2Vm and Al^{3+} derived from emission titration curve.

Detection limit calculation in emission spectroscopy.

The limit of detection (LOD) of Al_2 - Vm_2 was measured on the basis of fluorescence titration measurement. The detection limit was calculated using the following equation:

$$LOD = K \times \frac{\sigma}{S}$$

where K = 2 or 3 (we take 3 in this case), ' σ ' is the standard deviation of the blank solution and 'S' is the slope between the ratio of emission intensity *versus* $[Al^{3+}]$.

Figure S20. The limit of detection (LOD) of H_2Vm for Al³⁺ fluorescence responses (λ_{em} = 488 nm) as a function of Al³⁺ concentration.

Figure S21. Fluorescence emission spectra of H_2Vm in the presence of Al^{3+} ion followed by addition of EDTA.

Figure S22.Time-resolved fluorescence decay of H_2Vm in the absence and presence of added Al³⁺ solution at 375 nm.

Figure S23. Emission intensity of probe H_2Vm (5×10⁻⁷ M) in absence and in presence of Al³⁺ as a function of pH values in aqueous solution at 488 nm. **Inset:** pH plot of zoomed graphic of H_2Vm and in presence of Al³⁺.

Figure S24. UV-vis spectra of complex 1 (5×10^{-7} M) in HEPES buffer (pH = 7.4) solution in the presence of various concentration of **PA** (0, 0.5, 1, 1.5, 2, 2.5, 3, 4, 5, 6, 7, 8, 9 and 10) ×10⁻⁷ M. **Inset:** UV-vis spectra of zoomed graphic of complex 1.

Figure S25. The limit of detection (LOD) of complex 1 for **PA** fluorescence responses (λ_{em} = 484 nm) as a function of **PA** concentration.

Figure S26. Job's plot for the identification of complex **1-**PA (1:2) complex stoichiometry using absorbance values at 364 nm.

Figure S27. Stern–Volmer plot of fluorescence quenching for complexation between complex 1 and PA derived from emission titration curve.

Figure S28. Time-resolved fluorescence decay of complex 1 with PA in solution at 375 nm.

Table S2. Fluorescence lifetime measurement of chemosensor H_2Vm , complex 1 and complex 2 in aqueous solution.

	φ _f	$\tau_{av}(ns)$	$K_{r}(\times 10^{9}) (S^{-1})$	$K_{nr}(\times 10^9) (S^{-1})$	χ2
H ₂ Vm	0.036	0.074	0.486	13.027	1.010
$H_2Vm + Al^{3+}$ (complex 1)	0.511	0.579	0.883	0.845	1.028
Al ₂ -Vm ₂ complex + PA	0.095	0.528	0.179	1.714	1.019
(complex 2)					

Table S3. Stability constant was compared with complexation properties of the other metal ions.

Different metal ions	Stability constant from absorption data (M ⁻¹)	Stability constant from fluorescence data (M ⁻¹)
Al ³⁺	5.23×10^{5}	$4.19 imes 10^5$
Li ⁺	1.021×10^{4}	1.104×10^{4}
Na ⁺	1.137×10^{4}	1.149×10^{4}
K+	1.276×10^{4}	1.257×10^{4}
Ca ²⁺	1.314×10^{4}	1.379×10^{4}
Mg ²⁺	1.576×10^{4}	1.681×10^{4}
Mn ²⁺	1.823×10^{4}	1.885×10^{4}
Ba ²⁺	1.199 × 10 ⁴	1.205×10^{4}
Cu ²⁺	1.079×10^{4}	1.104×10^{4}
Fe ²⁺	1.753 × 10 ⁴	1.767×10^4
Zn ²⁺	2.803×10^{4}	2.911 × 10 ⁴
Cd ²⁺	2.158×10^{4}	2.219×10^{4}
Hg ²⁺	1.812×10^{4}	1.915×10^{4}
Ni ²⁺	1.865×10^{4}	1.891 × 10 ⁴
Pb ²⁺	1.943 × 10 ⁴	1.939×10^{4}
Sr ²⁺	1.087×10^{4}	1.109×10^{4}
Co ²⁺	1.342×10^{4}	1.351×10^{4}
Cr ³⁺	1.265×10^{4}	1.278×10^{4}

3. Theoretical Data.

Table S4. Selected parameters for the vertical excitation (UV-vis absorption) of H_2Vm (bis-keto form), electronic excitation energy (eV) and oscillator strength (*f*), and composition of the low-lying excited state of H_2Vm ; calculation of the S₀–S_n energy gaps based on optimized ground-state geometries (UV-vis absorption, H_2O used as solvent). Only those transitions that contribute higher than 10% are given

Process	Electronic transitions	Composition	Excitation energy	Oscillator strength (f)	contribution	λ _{exp} (nm)
Absorption	$S_0 \rightarrow S_1$	HOMO → LUMO HOMO-1 → LUMO	3.0108 eV (412 nm)	0.1111	87% 13%	420

Table S5. Selected parameters for the vertical excitation (UV-vis absorptions) and the emission of Al_2 -Vm₂, electronic excitation energies (eV) and oscillator strengths (*f*) and contributions of the lowest lying excited state; calculation of the S₀–S_n energy gap is based on optimized ground-state geometries (UV-vis absorption) (H₂O used as solvent).

Process	Electronic transitions ¹	Composition	Excitation energy	Oscillator strength (f)	contri- bution	λ _{exp} (nm)
Absorption	$S_0 \rightarrow S_8$	$HOMO-3 \rightarrow LUMO$ $HOMO-2 \rightarrow$ $LUMO+1$ $HOMO-1 \rightarrow$	3.4147 eV (363 nm)	0.0822	36% 36% 28%	368

 ${}^{1}S_{0} \rightarrow S_{1}f = 0.0001; S_{0} \rightarrow S_{2}f = 0.0005; S_{0} \rightarrow S_{3}f = 0.0000; S_{0} \rightarrow S_{4}f = 0.0003; S_{0} \rightarrow S_{5}f = 0.0007; S_{0} \rightarrow S_{6}f = 0.0005; S_{0} \rightarrow S_{7}f = 0.0003.$

3. Theoretical Data.

Figure S29. Theoretical UV-vis spectrum of Al₂-Vm₂.

4. Cell study.

Figure S30. Percentage (%) cell viability of Hela cells treated with different concentrations of H_2Vm for 24 hours determined by MTT assay.

5. Cartesian Coordinates.

Enol

С	1.70649300	-1.12030300	5.47524000
С	0.97424100	-0.31509500	4.57345700
С	-0.35273500	0.06388600	4.88641100
С	-0.92779300	-0.37196200	6.10961600
С	-0.18242200	-1.16366200	6.98042000
С	1.13657300	-1.53967800	6.66377300
Н	2.72504900	-1.40402100	5.22008600
Н	-0.61707800	-1.49839300	7.91587100
Н	1.69762100	-2.15781800	7.35851100
0	-1.10423900	0.82373200	4.07546200
Н	-0.56156600	1.03699400	3.26600900
0	-2.20724300	0.04232200	6.32644100
С	1.59982200	0.11878600	3.33213400
Н	2.63074400	-0.23136600	3.16026200
Ν	1.00653800	0.86882400	2.47355600
С	-2.85332800	-0.36439700	7.52305500
Н	-2.32846100	0.01402900	8.41083200
Н	-3.85333800	0.07054300	7.48012900
Н	-2.93289300	-1.45834700	7.58319100
С	1.70247200	1.25290900	1.26336100
Н	2.69504900	0.77358500	1.19738300
Н	1.86589800	2.34199400	1.29107200
С	0.88459100	0.91790400	0.00000000
С	1.70649300	-1.12030300	-5.47524000
С	0.97424100	-0.31509500	-4.57345700
С	-0.35273500	0.06388600	-4.88641100
С	-0.92779300	-0.37196200	-6.10961600
С	-0.18242200	-1.16366200	-6.98042000
С	1.13657300	-1.53967800	-6.66377300
Н	2.72504900	-1.40402100	-5.22008600
Н	-0.61707800	-1.49839300	-7.91587100
Н	1.69762100	-2.15781800	-7.35851100
0	-1.10423900	0.82373200	-4.07546200
Н	-0.56156600	1.03699400	-3.26600900
0	-2.20724300	0.04232200	-6.32644100
С	1.59982200	0.11878600	-3.33213400
Н	2.63074400	-0.23136600	-3.16026200
Ν	1.00653800	0.86882400	-2.47355600
С	-2.85332800	-0.36439700	-7.52305500
Н	-2.93289300	-1.45834700	-7.58319100
Н	-3.85333800	0.07054300	-7.48012900
Н	-2.32846100	0.01402900	-8.41083200
С	1.70247200	1.25290900	-1.26336100
Н	1.86589800	2.34199400	-1.29107200
Н	2.69504900	0.77358500	-1.19738300

Н	0.65448400 -0.15342200 0.00000000
0	-0.38551900 1.55120600 0.00000000
Н	-0.26762800 2.51575100 0.00000000
Keto	
С	1.74319400 -1.03868300 5.62238300
С	1.00073200 -0.29309700 4.64566600
С	-0.39063300 0.09094600 4.88735600
С	-0.95573700 -0.33082000 6.17334600
С	-0.20302400 -1.04601400 7.07424100
С	1.15698700 -1.40426500 6.80009600
Н	2.77627800 -1.30642300 5.40736500
Н	-0.63270400 -1.35475500 8.02199000
Н	1.71044400 -1.96906400 7.54464900
0	-1.06588600 0.74551200 4.05034600
0	-2.24759500 0.05265300 6.34890900
С	1.61567500 0.08983900 3.45101100
Н	2.66156700 -0.17247700 3.28412100
Ν	1.01615900 0.76969100 2.47647700
С	-2.89565600 -0.31598500 7.55507100
Н	-2.39207900 0.11994600 8.42926800
н	-3.90901300 0.08297100 7.48208600
Н	-2.93871600 -1.40829700 7.66759200
С	1.66798500 1.22426600 1.26573800
н	2.69313000 0.83373900 1.25285600
Н	1.73834000 2.32392800 1.27705100
С	0.91648500 0.77762100 0.00000000
С	1.74319400 -1.03868300 -5.62238300
С	1.00073200 -0.29309700 -4.64566600
С	-0.39063300 0.09094600 -4.88735600
С	-0.95573700 -0.33082000 -6.17334600
С	-0.20302400 -1.04601400 -7.07424100
С	1.15698700 -1.40426500 -6.80009600
Н	2.77627800 -1.30642300 -5.40736500
н	-0.63270400 -1.35475500 -8.02199000
н	1.71044400 -1.96906400 -7.54464900
0	-1.06588600 0.74551200 -4.05034600
0	-2.24759500 0.05265300 -6.34890900
C	1.61567500 0.08983900 -3.45101100
H	2.66156700 -0.17247700 -3.28412100
N	1.01615900 0.76969100 -2.47647700
C	-2.89565600 -0.31598500 -7.55507100
н	-2 93871600 -1 40829700 -7 66759200
н	-3 90901300 0 08297100 -7 48208600
н	-2 39207900 0 11994600 -8 42926800
C	1 66798500 1.22426600 -1 26573800
н	1.73834000 2.32392800 -1.22575100
н	2 69313000 0 83373900 -1 25285600
н	
	0.02007200 -0.01400200 0.00000000

0	-0.42786100	1.23725800	0.00000000
Н	-0.45202100	2.20964600	0.00000000
Н	0.02337300	0.99048600	2.67779100
Н	0.02337300	0.99048600	-2.67779100
Keto-enol			
С	5.56533200	-1.75001200	0.96656900
С	4.62897900	-0.97929000	0.23962900
С	4.91608800	0.37223800	-0.06526400
С	6.14760200	0.93423000	0.36363800
С	7.05196300	0.15093800	1.07724800
С	6.76143900	-1.19272800	1.38028400
Н	5.33037800	-2.78719200	1.19452300
Н	7.99397500	0.57484600	1.40722800
Н	7.48246300	-1.78249500	1.93856200
0	4.07174300	1.16038700	-0.74849600
0	6.33671900	2.23870800	0.02323300
С	3.38083300	-1.59247800	-0.18850000
Н	3.23478500	-2.64528100	0.10246300
Ν	2.48521700	-0.96844400	-0.86867100
С	7.53958800	2.87417500	0.43036300
Н	8.41942400	2.38563400	-0.00983400
Н	7.47046500	3.89868200	0.06103300
Н	7.63516400	2.88559800	1.52447000
С	1.27418200	-1.66414800	-1.25023700
Н	1.24391800	-2.68848000	-0.83863000
Н	1.26062400	-1.75527900	-2.34848700
С	0.01109200	-0.90426500	-0.80916200
С	-5.57138900	-1.71399800	1.13701800
С	-4.61776000	-0.99168900	0.34421500
С	-4.88432200	0.37821100	-0.09493900
С	-6.17182000	0.94284100	0.32439400
С	-7.05084800	0.20993100	1.08597800
С	-6.75197000	-1.12939800	1.49740800
Н	-5.33718800	-2.73177100	1.44474200
Н	-7.99953300	0.64005800	1.39147300
Н	-7.47924700	-1.66859100	2.09750700
0	-4.06788700	1.03574600	-0.79119600
0	-6.37263000	2.21537900	-0.11076600
С	-3.42052200	-1.60913300	-0.03113100
Н	-3.23874800	-2.64035900	0.27579700
Ν	-2.46285200	-1.03485100	-0.75218100
С	-7.58219600	2.86070500	0.24867800
Н	-7.67927700	2.94959200	1.33987300
Н	-7.53134200	3.85696600	-0.19461400
н	-8.45570300	2.32628700	-0.15073800
С	-1.25140700	-1.69803200	-1.19236200
Н	-1.28025200	-1.82234500	-2.28606800
Н	-1.22143700	-2.70015200	-0.74713400
-			

Н	0.03038200	-0.77227200	0.27853700
0	-0.05137200	0.41606500	-1.33061300
Н	0.19109700	0.41241700	-2.27144600
Н	-2.66923200	-0.05594900	-1.01929500
Н	3.26095300	0.62427200	-0.96425800
Complex 1			
C .	2.29593100	-2.60401500	-2.00944800
С	3.33757800	-3.01267200	-2.88150800
Н	3.11885600	-3.15585500	-3.93692000
С	4.60622300	-3.22671500	-2.38820400
Н	5.40619000	-3.55366700	-3.04535700
С	4.87996400	-3.01510800	-1.01912500
H	5.88669300	-3.17867900	-0.64994300
C	3.88036400	-2.60417500	-0.14882500
C	2,55028600	-2.41787200	-0.63049200
C	1 01640300	-2 23799500	-2 55073400
н	0 95440500	-2 22024200	-3 64393200
C	-1 18078900	-1 37968600	-2 66083/00
н	-2 071/13200	-1.9388/600	-2.00083400
н Ц	-0.00252400	-1.53884000	-2.37008000
C C	-0.33332400	0 1000/000	-2 41020400
	-1.47214100	1 09269600	2.41020400
с u	-0.52070900	1.06506000	-2.70520000
	0.10895000	0.75068000	-3.0881/000
H C	-0.78492800	2.05002000	-2.96983200
	1.93182700	1.06/92800	-2.06396300
H C	2.09523400	0.01010800	-3.04680100
C	3.13359800	1.29822100	-1.30977200
C	4.36776100	0.87607700	-1.85594200
H	4.3/493/00	0.41694700	-2.84120400
C	5.54433000	1.01681100	-1.14418900
Н	6.48909400	0.69209400	-1.56//4200
С	5.50210700	1.56619900	0.14944500
Н	6.40404200	1.65827400	0.74808200
С	4.30506800	1.98609000	0.70690000
С	3.09025700	1.89675100	-0.02320900
С	4.03239600	3.79988100	2.23895900
Н	3.03848400	4.08156300	1.88276400
Н	4.79715900	4.40029100	1.73220500
Н	4.10127000	3.95688900	3.31746600
С	-2.63464500	2.40199500	-0.08938100
С	-3.81950200	2.63416800	-0.83684800
С	-5.06790100	2.47311200	-0.25789700
Н	-5.94361400	2.66552700	-0.87141400
С	-5.19812300	2.05197000	1.07744100
Н	-6.18281100	1.93120400	1.51702000
С	-4.06016200	1.77254000	1.81017900
Н	-4.14098500	1.40619300	2.83038300
С	-2.77454600	1.92864100	1.24188500

С	-1.62734400	1.55404100	2.02138700
н	-1.85996500	1.21656300	3.03574700
С	0.59778000	1.23502700	2.73454800
Н	0.06279800	1.06944600	3.67944300
Н	1.22422500	2.11958000	2.86613100
С	1.56011200	0.05122700	2.47034100
С	1.02047200	-1.33837800	2.85097900
Н	1.80972100	-2.05543100	2.62511300
Н	0.82063200	-1.35285900	3.93106200
С	-1.28689500	-1.83282700	2.80245600
Н	-1.21193400	-1.74355300	3.89179800
С	-2.61542100	-2.01612100	2.28754000
С	-3.69954400	-2.20152400	3.18370100
Н	-3.49547300	-2.31883100	4.24519800
С	-4.99094500	-2.23851800	2.70476200
н	-5.82560900	-2.39791900	3.38052700
С	-5.24287500	-2.06175600	1.32656500
Н	-6.26683900	-2.08426000	0.96966300
С	-4.20047400	-1.86122600	0.43228000
C	-2.85271000	-1.86989900	0.90067100
C	-5.62581000	-1.54071900	-1.45455100
Н	-5.47502600	-1.30169800	-2.50815700
Н	-6.19505900	-0.73413000	-0.97335800
н	-6.18263800	-2.48303600	-1.36474700
C	5.34443400	-2.34090300	1,71864800
н	5 99252000	-1 64134300	1 17451900
н	5 79564700	-3 34224800	1 70358400
н	5 23079000	-2 00435200	2 75014200
C	-3 2/7/8700	1 23692500	-2 5151/700
н	-3 29563700	4.23032300	-3 60363000
н	-2 21760500	4.31030100	-2 17622200
н ц	-2 20/55100	5 00077800	-2.17022200
N	-0.03870000	-1 879/9600	-2.00780000
N		1 22602000	1 7109/600
N	-0.27525200	1.52092000	1 66666000
N	-0.10403200	1.30072300	2 10722800
	1 97007700	-1.70091400	2.10732800
0	-1.07997700	1 6500000	0.03497100
0	-4.52451200	-1.05099900	-0.90290000
0	1.01055000	-2.05464400	0.21195000
0	4.05575200	-2.54994400	1.17725200
0	1.97694600	2.31828100	0.52414100
0	4.28357900	2.39955800	2.02670500
0	-1.46/8/600	2.58266500	-0.65/2/600
U	-3./3380300	2.92391400	-2.18632800
п 11	1.031//000	0.02013400	1.413/8000
Н	-1./434/400	0.22600600	-1.35993200
0	2.70590800	0.21944000	3.29553500
Н	3.22//1500	0.964/4/00	2.93899000

0	-2.57143800	0.40109900	-3.26386400
Н	-2.96055800	1.24921400	-2.97433100
Al	0.25731300	2.48167700	-0.06887500
Al	-0.17238700	-2.26655300	0.12143700
0	0.14358900	4.27192400	0.89343600
0	-0.25395200	-4.08412800	0.39774000
Ν	-1.01315700	-4.91056600	-0.35085700
0	-1.53810400	-4.44649800	-1.36400100
0	-1.10471200	-6.05896200	0.04086000
Ν	0.48290100	4.91921700	-0.17124800
0	0.59588800	6.11929600	-0.22213500
0	0.68772900	4.13305300	-1.17538300
Complex 2			
C	-2.08921000	2.57751600	2.05799600
C	-2.41270300	3.69169500	2.85044800
Н	-2.64083900	3,55595000	3,89020300
C	-2 44210500	4 93446000	2 29169500
н	-2 69902600	5 79132100	2 88029900
C	-2 13426900	5 09648500	0.93092600
н	-2 156/6700	6.07898600	0.50830300
C	-1 810/6900	1 0238/1700	0.15223300
C C	-1 79920000	2 73325100	0.13223500
C C	-1.96130900	1 26280300	2 65267000
с u	-1.00155600	1.20280300	2 72201100
C	-1.78155000	-1 05280700	2 82006800
н	-2 12918100	-1 8/802300	2 53081/00
н	-2.12318100	-1.84802300	2.33081400
C C	-0.05096700	-0.83037700	2 56228800
	1 10567000	-1.55052800	2.30328800
с u	0.02656400	0.11576500	2.88303100
п	1 09901100	1 10027200	3.04724000
	1.96691100	-1.19957200	2.90000000
	1.42026000	1.06059900	2.30365700
H C	1.20034500	1.84843700	3.34569300
	1.70619500	2.89745300	1.5/562800
	1.70916700	4.12654400	2.24776100
H	1.54881200	4.14/00600	3.30816300
C	1.90382800	5.28970900	1.55769900
H	1.90728100	6.23303100	2.06280200
C	2.08693500	5.23818300	0.1/192800
H	2.22/50800	6.14002600	-0.38861600
C	2.0//41100	4.04845500	-0.49601800
C	1.90323700	2.84430500	0.20244800
С	3.56517000	3.69695800	-2.36610600
Н	3.88900200	2.74583300	-1.97596500
H	4.25377800	4.47387900	-2.06446400
Н	3.49125100	3.66551800	-3.44121500
С	1.83605900	-2.86846400	-0.17284400
С	1.98092500	-4.07637800	0.52581600

С	1.96318600	-5.26600900	-0.14213500
Н	2.08176000	-6.17091000	0.41856600
С	1.78059600	-5.31322000	-1.52812800
Н	1.76240400	-6.25636900	-2.03324000
С	1.61427200	-4.14579600	-2.21840900
н	1.45476600	-4.16248400	-3.27900500
С	1.63948500	-2.91696700	-1.54626200
C	1.38910200	-1.69985600	-2.27481400
Н	1.16067600	-1.85633300	-3.31692500
C	1,12298900	0.58305800	-2.85694400
н	0 94392200	0 11353800	-3 81877000
н	2 02046700	1 17202600	-2 93092000
C	-0.01103800	1 57122100	-2 53599100
C	-1 44073700	1 10710800	-2 80440000
ч	-2 08169200	1 91766900	-2 50603400
Ц	-2.08105200	0.80281600	-2.30003400
	1 09711000	1 10625200	-3.80080300
	-1.98/11900	-1.19025500	-2.02775200
	-2.00500900	-1.1/9/1400	-3.70799000
	-2.146/2600	-2.50757400	-2.03323200
C	-2.49545600	-3.61382200	-2.82609200
H	-2./1906400	-3.4/2/4600	-3.86612100
C	-2.55485100	-4.85553900	-2.26/39300
Н	-2.83120300	-5.70610800	-2.85632000
С	-2.25257600	-5.02476300	-0.90625300
Н	-2.29846200	-6.00646000	-0.48367200
С	-1.90450200	-3.96005200	-0.12715300
С	-1.86210400	-2.67008900	-0.68802200
С	-1.50333000	-5.23213900	1.93261900
Н	-1.16579200	-4.93832700	2.91046200
Н	-0.79574100	-5.91553700	1.47881300
Н	-2.47245600	-5.71142300	1.99618200
С	-1.37689400	5.28608500	-1.90703200
Н	-0.65392900	5.95260300	-1.45235800
Н	-2.33436400	5.78810000	-1.97176500
Н	-1.04519600	4.98437600	-2.88446900
С	3.47429300	-3.76005600	2.39771300
Н	3.39983100	-3.72686500	3.47273300
Н	3.82094900	-2.81684200	2.00797900
Н	4.14474300	-4.55301200	2.09689600
Ν	-1.77772200	0.16388800	2.02859600
Ν	1.40654500	0.47969400	1.86828700
Ν	1.39732000	-0.49281500	-1.83925100
Ν	-1.77841100	-0.10196800	-2.00342000
0	-1.54628500	-1.64179900	0.07664400
0	-1.58086700	-3.99984000	1.19906600
0	-1.50680300	1.69778400	-0.05116200
0	-1.48437600	4.05596800	-1.17359100
0	1.89710000	1.69810000	-0.43860900

0	2.21855600	4.00701000	-1.87846700
0	1.85619100	-1.72242400	0.46822200
0	2.12133000	-4.03825600	1.90843600
Н	0.04724900	1.88406500	-1.52675700
н	0.00114800	-1.86467500	1.55412100
0	0.19512500	2.68528000	-3.43535300
н	0.80757500	3.30084300	-2.99789900
0	0.12776100	-2.66912800	3.46288400
н	0.72604700	-3.29897600	3.02616400
Al	2.05573200	-0.01427500	0.01491500
Al	-2.07508100	0.03446500	0.01240800
0	3.96559900	-0.03681000	0.01607400
0	-3.98494700	0.05699900	0.01124900
С	7.31252700	-0.34067900	-1.20902500
С	8.02847400	-0.02953800	-0.05270200
С	7.35002900	0.26389100	1.13002100
С	5.95495000	0.24741800	1.15647500
С	5.23923400	-0.06319400	0.00027200
С	5.91805300	-0.35765300	-1.18248300
Н	7.84762000	-0.57242800	-2.14128500
Н	7.91428900	0.50853200	2.04164500
С	-5.35891400	0.01626900	-0.03081800
С	-6.05142500	-0.38974000	1.11026000
С	-7.44611300	-0.39697800	1.11411700
С	-8.14893700	0.00305600	-0.02308500
С	-7.45652600	0.40940600	-1.16369200
С	-6.06140800	0.41564900	-1.16771900
н	-7.99202500	-0.71758300	2.01327700
Н	-8.01014600	0.72474300	-2.06009700
Ν	5.24017300	0.55680800	2.40318000
0	4.04108000	0.53435500	2.39373400
0	5.88465500	0.81932500	3.37997900
Ν	9.49810900	-0.01276900	-0.08085400
0	10.08482200	0.25843700	0.92941100
0	10.05172500	-0.27096400	-1.11296400
Ν	5.16348700	-0.68522400	-2.40077100
0	3.96544700	-0.69135500	-2.34524500
0	5.77604000	-0.93326500	-3.40160200
Ν	-9.61891000	-0.00461000	-0.01867800
0	-10.19403300	0.34477400	-1.01144400
0	-10.18438000	-0.35994400	0.97751000
Ν	-5.31067700	-0.81154600	2.30787000
0	-5.93460200	-1.15500600	3.27284200
0	-4.11198100	-0.79537600	2.27215600
Ν	-5.33196200	0.84370300	-2.37004200
0	-5.96495400	1.18119800	-3.33120600
0	-4.13297000	0.83834800	-2.34179000