Supporting Information

Amorphous mesoporous nickel phosphate/reduced graphene oxide with superior

performance for electrochemical capacitors

Jingjing Yuan^{1, 2}, Xiaoke Zheng², Dachuan Yao², Ling Jiang², Ya Li², Jianfei Che^{1*}, Guangyu He², Haiqun

Chen 2*

(¹School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China

²Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Key Laboratory of Advanced Catalytic Materials and

Technology, Changzhou University, Changzhou, Jiangsu 213164, China)

The XPS spectra of O 1s is presented in Fig. S1, which is a typical peak at 531.4 eV.

Figure S1. XPS spectra of element O in Ni₃(PO₄)₂/rGO-300.

The FTIR spectra of GO, Ni₃(PO₄)₂-300 and Ni₃(PO₄)₂/rGO-300 is presented in Fig. S2.

The TGA curve of Ni₃(PO₄)₂/rGO-300 and Ni₃(PO₄)₂-300 is shown in Fig. S3.

Figure S3. TGA curve of Ni₃(PO₄)₂/rGO-300 and Ni₃(PO₄)₂-300 in Nitrogen.

The BET isotherms of $Ni_3(PO_4)_2/rGO-900$ is shown in Fig. S4 and there is almost no specific surface area, indicating significant decrease of the surface area in the condition.

Figure S4. N2 adsorption-desorption isotherm of Ni₃(PO₄)₂/rGO-900.

Fig. S5 shows the Nyquist plots of Ni₃(PO₄)₂/rGO-300//AC.

Figure S5. Nyquist plots of Ni₃(PO₄)₂/rGO-300//AC