A Difunctional Azido-Cobalt(II) Coordination Polymer Exhibiting Slow Magnetic Relaxation Behaviour and High-Energy Characteristics with Good Thermostability and Insensitivity

Xiaohui Ma,^a Yaru Liu,^{*b} Weiming Song,^a Zheng Wang,^a Xiangyu Liu,^{*a} Gang Xie,^c Sanping Chen^{*c} and Shengli Gao^c

^a State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China.

^b School of Science, North University of China, Taiyuan 030051, China.

c Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710069, China.

Contents

Table S1 Relaxation fitting parameters from least-squares fitting of $\chi(f)$ data under 2000 dc field of 1

Table S2 Comparison of the experimental (from fitting) and DFT studies

 Table S3 Energy levels (cm⁻¹) of ligand field multiplets in zero field derived from

 CASSCF/NEVPT2/def2-TZVP CASSCF(7,5) (ORCA) calculations for Co1 ion.

Table S4 Individual contributions to D-tonsor for title complex by CASSCF/NEVPT2/def2-TZVP CASSCF(7,5) (ORCA) calculations for Co1 ion.

Table S5 Energy levels (cm⁻¹) of ligand field multiplets in zero field derived from CASSCF/NEVPT2/def2-TZVP CASSCF(7,5) (ORCA) calculations for Co2 ion.

Table S6 Individual contributions to D-tonsor for title complex by CASSCF/NEVPT2/def2-TZVP CASSCF(7,5) (ORCA) calculations for Co2 ion.

Table S7 Peak temperatures of exothermic stage at different heating rates and kinetic parameters

Table S8 Selected bond lengths [Å] and bond angles [°] for 1

Fig. S1 3D networks through inter-molecular interactions in 1

Fig. S2 PXRD patterns for compound 1

Fig. S3 $1/\chi_{\rm M}$ vs. T plots, the red solid line is the best fit to the Curie–Weiss law

Fig. S4 The in-phase and out-of phase ac susceptibility signals under 0 Oe dc field of 1

Fig. S5 *Ab initio* computational models for Co1 centre (a) and Co2 centre (b). The pink spheres designate Na(I) ions to compensate the charges of the dianionic fragments.

*Corresponding author

Dr. Xiangyu Liu; Tel.: +86-951-2062004; Fax: +86-951-2062860 E-mail: xiangyuliu432@126.com

*Corresponding author Dr. Yaru Liu; E-mail: liuyr326@163.com

*Corresponding author Prof. Sanping Chen; E-mail: sanpingchen@126.com

<i>T</i> (K)	χT	χs	α
2.0	0.411	0.040	0.29
2.1	0.385	0.037	0.26
2.2	0.378	0.039	0.24
2.3	0.358	0.034	0.21
2.4	0.352	0.036	0.19
2.5	0.336	0.025	0.17
2.6	0.335	0.016	0.19

of **1**

Table S1 Relaxation fitting parameters from least-squares fitting of $\chi(f)$ data under 2000 dc field

Table S2 Comparison of the experimental (from fitting) and DFT studies

			B3LYP			BP86			
		tzvp	tzv	def2-tzvp	def2-svp	tzvp	tzv	def2-tzvp	def2-svp
	$E_{\rm HS}/{\rm eV}$	-135448.15360	-135426.26982	-135451.77322	-135372.32784	-135500.42006	-135480.34189	-135503.88798	-135424.87213
J1(C01-C01)	$E_{\rm BS}/{\rm eV}$	-135448.17878	-135426.29696	-135451.79853	-135372.35180	-135500.47077	-135480.39442	-135503.93974	-135424.91790
	$J_{\rm DFT}^{1/\rm cm^{-1}}$	-22.56	-24.31	-22.68	-21.47	-45.44	-47.08	-46.38	-41.02
	$J_{\rm DFT}^2/{\rm cm}^{-1}$	-16.92	-18.24	-17.01	-16.1	-34.08	-35.31	-34.79	-30.76
	$J_{\rm DFT}^{3}/{\rm cm}^{-1}$	-22.55	-24.3	-22.66	-21.46	-45.14	-46.76	-46.07	-40.78
	$J_{\rm Expt}^{1/\rm cm^{-1}}$				-18	3.36			
J ₂ (Co1-Co2)	$E_{\rm HS}/{\rm eV}$	-135515.94873	-135496.03117	-135519.24859	-135389.00085	-135515.94873	-135496.03117	-135519.24859	-135442.41784
	$E_{\rm BS}/{\rm eV}$	-135515.93023	-135496.01142	-135519.22954	-135388.98683	-135515.93023	-135496.01142	-135519.22954	-135442.40296
	$J_{\rm DFT}^{1/\rm cm^{-1}}$	16.59	17.7	13.76	12.56	16.59	17.7	17.08	13.34
	$J_{\rm DFT}^2/{\rm cm}^{-1}$	12.44	13.27	10.32	9.42	12.44	13.27	12.81	10
	$J_{\rm DFT}^{3/\rm cm^{-1}}$	16.52	17.63	13.74	12.55	16.52	17.63	17.01	13.29
	$J_{\rm Expt}^{1/\rm cm^{-1}}$				20	.87			
	$E_{\rm HS}/{\rm eV}$	-135448.41811	-135426.61650	-135452.01439	-135372.49682	-135500.64121	-135480.64594	-135504.09903	-135425.00223
	E _{BS} /eV	-135448.41191	-135426.60910	-135452.00801	-135372.49117	-135500.63756	-135480.64080	-135504.09495	-135425.00063
J ₃ (Co2-Co2)	$J_{\rm DFT}^{1}/{\rm cm}^{-1}$	5.56	6.63	5.71	5.06	3.27	4.61	3.66	1.44
	$J_{\rm DFT}^2/{\rm cm}^{-1}$	4.17	4.97	4.28	3.79	2.46	3.46	2.74	1.08
	$J_{\rm DFT}^{3}/{\rm cm}^{-1}$	5.55	6.62	5.7	5.05	3.26	4.59	3.64	1.43
	$J_{\rm Expt}^{1/}{\rm cm}^{-1}$				2.	04			
$J_{\rm DFT}^{1} = -\frac{E}{E}$	$J_{\rm DFT}^{\ 1} = -\frac{E_{\rm HS} - E_{\rm BS}}{S_{\rm max}^2}, J_{\rm DFT}^{\ 2} = -\frac{E_{\rm HS} - E_{\rm BS}}{S_{\rm max}(S_{\rm max} + 1)}, J_{\rm DFT}^{\ 3} = -\frac{E_{\rm HS} - E_{\rm BS}}{S_{\rm HS}^2 - S_{\rm BS}^2}$								

0/10001/1			bei (7,5) (o	(iteri) culcul	ations for et	/1 1011.	
0	0.0	30	16260.9	60	26323.0	90	38383.9
1	0.0	31	16260.9	61	26323.0	91	38383.9
2	147.2	32	17630.8	62	26723.3	92	38578.3
3	147.2	33	17630.8	63	26723.3	93	38578.3
4	1161.5	34	18302.0	64	27215.7	94	39930.3
5	1161.5	35	18302.0	65	27215.7	95	39930.3
6	1361.5	36	19245.5	66	27583.9	96	44307.2
7	1361.5	37	19245.5	67	27583.9	97	44307.2
8	2109.3	38	19317.6	68	28421.3	98	44715.8
9	2109.3	39	19317.6	69	28421.3	99	44715.8
10	2270.3	40	20065.0	70	30416.1	100	45235.0
11	2270.3	41	20065.0	71	30416.1	101	45235.0
12	3461.3	42	20528.0	72	30994.7	102	47779.4
13	3461.3	43	20528.0	73	30994.7	103	47779.4
14	3622.6	44	20628.0	74	31749.7	104	49083.3
15	3622.6	45	20628.0	75	31749.7	105	49083.3
16	4137.9	46	21040.1	76	32111.4	106	49261.2
17	4137.9	47	21040.1	77	32111.4	107	49261.2
18	7900.6	48	21313.0	78	35550.7	108	49603.1
19	7900.6	49	21313.0	79	35550.7	109	49603.1
20	8819.8	50	22244.7	80	36196.1	110	60643.0
21	8819.8	51	22244.7	81	36196.1	111	60643.0
22	9882.8	52	22350.0	82	36495.0	112	64882.3
23	9882.8	53	22350.0	83	36495.0	113	64882.3
24	10111.9	54	22674.7	84	36751.2	114	68342.3
25	10111.9	55	22674.7	85	36751.2	115	68342.3
26	10649.7	56	23337.8	86	37169.1	116	69168.9
27	10649.7	57	23337.8	87	37169.1	117	69168.9
28	10696.1	58	23429.3	88	37613.5	118	71844.4
29	10696.1	59	23429.3	89	37613.5	119	71844.4

Table S3 Energy levels (cm⁻¹) of ligand field multiplets in zero field derived from CASSCF/NEVPT2/def2-TZVP CASSCF(7,5) (ORCA) calculations for Co1 ion.

Table S4 Individual contributions to D-tonsor for title complex by CASSCF/NEVPT2/def2-TZV	P
CASSCF(7,5) (ORCA) calculations for Co1 ion.	

/			
2 <i>S</i> +1	Root	D	Ε
4	0	0.000	0.000
4	1	-61.493	-4.826
4	2	-1.415	-14.786
4	3	-8.260	-1.033
4	4	3.649	2.134
4	5	-1.429	0.262
4	6	0.119	-0.011

4	7	0.269	0.204
4	8	-0.084	-0.002
4	9	-0.067	-0.007
2	0	-8.740	-4.602
2	1	0.078	0.006
2	2	-1.179	-0.997
2	3	0.803	0.040
2	4	0.659	0.105
2	5	-0.367	0.646
2	6	1.108	-0.030
2	7	-0.452	0.081
2	8	1.085	0.112
2	9	-1.120	1.072
2	10	-0.885	0.174
2	11	0.028	0.015
2	12	0.110	0.043
2	13	-0.262	0.194
2	14	0.390	0.010
2	15	-0.188	0.288
2	16	0.239	0.008
2	17	-0.200	0.045
2	18	0.353	-0.028
2	19	-1.271	-1.253
2	20	-0.234	-0.188
2	21	-0.017	0.011
2	22	-0.044	-0.007
2	23	-0.091	0.056
2	24	-0.166	-0.186
2	25	-0.093	0.032
2	26	0.040	-0.036
2	27	0.026	0.000
2	28	-0.059	-0.083
2	29	0.066	0.004
2	30	0.135	0.009
2	31	-0.031	0.038
2	32	-0.027	0.018
2	33	0.031	-0.002
2	34	0.053	0.003
2	35	-0.009	0.009
2	36	0.000	0.000
2	37	0.005	-0.001
2	38	-0.008	-0.007
2	39	-0.049	-0.022

CHODEL			,501(7,5)(0	iteri) culcul		2 1011.	
0	0.0	30	16490.7	60	25672.7	90	35981.5
1	0.0	31	16490.7	61	25672.7	91	35981.5
2	213.7	32	17021.3	62	26250.4	92	36387.9
3	213.7	33	17021.3	63	26250.4	93	36387.9
4	549.0	34	17284.5	64	26674.7	94	37620.4
5	549.0	35	17284.5	65	26674.7	95	37620.4
6	812.4	36	17691.7	66	27523.0	96	42483.8
7	812.4	37	17691.7	67	27523.0	97	42483.8
8	1500.6	38	17967.3	68	27831.2	98	43059.3
9	1500.6	39	17967.3	69	27831.2	99	43059.3
10	1552.8	40	19499.7	70	28963.7	100	43523.8
11	1552.8	41	19499.7	71	28963.7	101	43523.8
12	2344.2	42	19974.0	72	29057.3	102	46142.9
13	2344.2	43	19974.0	73	29057.3	103	46142.9
14	2518.6	44	20188.4	74	30268.4	104	46940.3
15	2518.6	45	20188.4	75	30268.4	105	46940.3
16	5449.3	46	20405.4	76	31001.6	106	47146.6
17	5449.3	47	20405.4	77	31001.6	107	47146.6
18	8714.0	48	20606.6	78	34161.8	108	47372.0
19	8714.0	49	20606.6	79	34161.8	109	47372.0
20	9034.5	50	20893.1	80	34377.8	110	59766.1
21	9034.5	51	20893.1	81	34377.8	111	59766.1
22	9264.1	52	21169.9	82	34798.5	112	63108.0
23	9264.1	53	21169.9	83	34798.5	113	63108.0
24	9692.5	54	21484.9	84	35013.3	114	66758.3
25	9692.5	55	21484.9	85	35013.3	115	66758.3
26	9848.6	56	21810.6	86	35219.3	116	67168.5
27	9848.6	57	21810.6	87	35219.3	117	67168.5
28	10338.8	58	22044.9	88	35675.9	118	69639.6
29	10338.8	59	22044.9	89	35675.9	119	69639.6

Table S5 Energy levels (cm⁻¹) of ligand field multiplets in zero field derived from CASSCF/NEVPT2/def2-TZVP CASSCF(7,5) (ORCA) calculations for Co2 ion.

Table S6 Individual contributions to D-tonsor for title complex by CASSCF/NEVPT2/def2-TZ'	VP
CASSCF(7,5) (ORCA) calculations for Co2 ion.	

/			
2 <i>S</i> +1	Root	D	Ε
4	0	0.000	0.000
4	1	-76.656	-3.728
4	2	-21.903	-10.021
4	3	-45.439	1.139
4	4	4.937	4.014
4	5	-0.581	-0.023
4	6	0.152	-0.050

4	7	0.293	0.227
4	8	-0.025	0.001
4	9	-0.109	-0.008
2	0	-3.768	4.483
2	1	-0.029	0.007
2	2	-1.471	-0.156
2	3	1.429	-0.023
2	4	1.136	0.043
2	5	-1.604	0.671
2	6	0.399	-0.001
2	7	-0.611	0.330
2	8	-0.471	-0.358
2	9	-0.080	0.214
2	10	-1.263	-0.078
2	11	0.025	-0.002
2	12	0.202	-0.015
2	13	-0.055	-0.052
2	14	0.090	0.003
2	15	-0.515	0.229
2	16	0.275	-0.015
2	17	-0.175	-0.173
2	18	0.131	0.005
2	19	-0.335	-0.128
2	20	-0.058	-0.022
2	21	-0.596	-0.012
2	22	-0.045	0.046
2	23	-0.042	0.003
2	24	-0.549	-0.098
2	25	-0.152	0.133
2	26	0.000	-0.067
2	27	0.066	0.011
2	28	0.217	0.013
2	29	0.047	-0.022
2	30	0.015	-0.022
2	31	-0.045	0.008
2	32	-0.012	-0.016
2	33	0.031	0.001
2	34	0.097	0.006
2	35	-0.022	0.007
2	36	0.000	0.000
2	37	0.002	0.000
2	38	-0.015	-0.013
2	39	-0.038	0.045

$\beta(^{\circ}\mathrm{C}\cdot\mathrm{min}^{-1})$	Peaks temperatures $T_p(^{\circ}C)$
	Compound 1
2	167
5	182
8	190
10	201
The calculation results by Kissinger's method E_k (kJ·mol ⁻¹)	77.244
$\text{Log } A (s^{-1})$	6.407
Linear correlation coefficient (R_k)	0.9988
The calculation results by Ozawa-Doyle's method E_0 (kJ·mol ⁻¹)	80.6695
Linear correlation coefficient (<i>R</i> _o)	0.9990

Table S5 Peak temperatures of exothermic stage at different heating rates and kinetic parameters

Table S6 Selected bond lengths [Å] and bond angles [°] for 1

Tuble Se Sciecte	a sona tengen	[[] and some angles [
Co(1)-N(1)	1.978(3)	N(5)#1-Co(1)-N(4)	92.45(14)	
Co (1)- N(3)	2.021(3)	N(5)#1-Co(1)-N(7)	95.72(14)	
Co (1)-N(4)	1.994(3)	N(5)#1-Co(1)-N(3)	169.52(14)	
Co (1)-N(5) #1	1.978(4)	N(8)-Co(2)-N(3)	94.35(12)	
Co (1)-N(7)	2.408(4)	N(8)-Co(2)-N(4)	97.94(13)	
Co (2)-N(2)	1.974(3)	N(8)#2-Co(2)-N(3)	92.69(14)	
Co (2)-N(3)	2.015(3)	N(8)#2-Co(2)-N(7)	85.24(14)	
Co (2)-N(4)	2.032(3)	N(8)-Co(2)-N(2)	97.38(12)	
Co (2)-N(8)	2.432(3)	Co(1)-N(3)-Co(2)	100.24(14)	
Co (2)-N(8)#2	1.982(3)	Co(2)-N(8)-Co(2)	94.76(14)	
Symmetry transform				
#1 -x+1, -y+1 ,-z	#2 -x+1, -y+1	, -z+1		

Fig. S1 3D networks through inter-molecular interactions in 1

Fig. S2 PXRD patterns for compound 1

Fig. S3 $1/\chi_M vs. T$ plots, the red solid line is the best fit to the Curie–Weiss law

Fig. S4 The in-phase and out-of phase ac susceptibility signals under 0 Oe dc field for 1

Fig. S5 *Ab initio* computational models for Co1 centre (a) and Co2 centre (b). The pink spheres designate Na(I) ions to compensate the charges of the dianionic fragments.