Supporting information:
 Protonation and water exchange kinetics in sandwich polyoxometalates.

C. André Ohlin ${ }^{1}$
${ }^{1}$ Department of Chemistry, Umeå University, Sweden

Department of Chemistry, Umeå University, Sweden

Contents

List of Tables

S1 Energies, bond distances and partial charges using different partition methods in $\mathrm{H}_{2}\left[\mathrm{Zn}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\left(\mathrm{PW}_{9} \mathrm{O}_{34}\right)_{2}\right]^{8-}$ as a function of protonation site. Geometries optimised at pbe0/def2-svp with PCM. The $\mathrm{d}\left(\mathrm{M}-\mathrm{OH}_{2}\right)$ in the non-protonated form is $2.192 \AA$. Partial charges were calculated for the unprotonated molecule.
S2 Energies and bond distances in $\mathrm{H}_{2}\left[\mathrm{Zn}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\left(\mathrm{PW}_{9} \mathrm{O}_{34}\right)_{2}\right]^{8-}$ (left) and $\mathrm{H}_{4}\left[\mathrm{Zn}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\left(\mathrm{PW}_{9} \mathrm{O}_{34}\right)_{2}\right]^{6^{6-}}$ (right) as a function of protonation site. Geometries optimised at pbe0/def-svp with PCM. The $\mathrm{d}\left(\mathrm{M}-\mathrm{OH}_{2}\right)$ in the non-protonated form is $2.192 \AA$.
S3 Energies and bond distances in $\mathrm{H}_{2}\left[\mathrm{Zn}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\left(\mathrm{PW}_{9} \mathrm{O}_{34}\right)_{2}\right]^{8-}$ (left) and $\mathrm{H}_{4}\left[\mathrm{Zn}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\left(\mathrm{PW}_{9} \mathrm{O}_{34}\right)_{2}\right]^{6-}$ (right) as a function of protonation site. Geometries optimised at pbe0/def2-tzvp with PCM. The $\mathrm{d}\left(\mathrm{M}-\mathrm{OH}_{2}\right)$ in the non-protonated form is $2.236 \AA$.
S4 Bond parameters obtained from crystal structures, and rates of aquo-ligand exchange. Average bond distances were used where there were several different types of water ligands.

List of Figures

S1 Structure of $\left[\mathrm{Zn}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\left(\mathrm{PW}_{9} \mathrm{O}_{34}\right)_{2}\right]^{10-}$. $\mu_{2}-\mathrm{O}$ sites are labelled A-J and L, the single $\mu_{3}-\mathrm{O}$ site is labelled K , and the terminal η-O sites are labelled $\mathrm{N}-\mathrm{Q}$.
S2 Top: $\mathrm{Zn}-\mathrm{OH}_{2}$ distance as a function of basis set. Bottom: r vs protonation site, where r is the $\mathrm{Zn}-\mathrm{OH}_{2}$ distance as a function of basis set divided by the $\mathrm{Zn}-\mathrm{OH}_{2}$ distance in the unprotonated complex at the same level of theory. Def2-svp results given as red squares and def2-tzvp data given as empty blue circles. The larger basis set gives longer absolute $\mathrm{Zn}-\mathrm{OH}_{2}$ distances, but also predicts a larger contraction due to protonation.
S3 Comparison of partial charges from different methods at pbe0/def2-svp with relative energies of $\mathrm{H}_{2}\left[\mathrm{Zn}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\left(\mathrm{PW}_{9} \mathrm{O}_{34}\right)_{2}\right]^{8-}$ protonated in different loci. All partial charges methods indicate that site $\mathrm{K}\left(\mu_{3}\right)$ has the most negative partial charge.

Listings

Figure S1: Structure of $\left[\mathrm{Zn}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\left(\mathrm{PW}_{9} \mathrm{O}_{34}\right)_{2}\right]^{10-} . \mu_{2}-\mathrm{O}$ sites are labelled A-J and L, the single $\mu_{3}-\mathrm{O}$ site is labelled K , and the terminal η - O sites are labelled N -Q.

Table S1: Energies, bond distances and partial charges using different partition methods in $\mathrm{H}_{2}\left[\mathrm{Zn}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\left(\mathrm{PW}_{9} \mathrm{O}_{34}\right)_{2}\right]^{8-}$ as a function of protonation site. Geometries optimised at pbe0/def2-svp with PCM. The $\mathrm{d}\left(\mathrm{M}-\mathrm{OH}_{2}\right)$ in the non-protonated form is $2.192 \AA$. Partial charges were calculated for the unprotonated molecule.

Entry	Site	ϵ $($ Hartree $)$	$\Delta \epsilon$ $(\mathrm{kcal} / \mathrm{mol})$	$\mathrm{d}\left(\mathrm{M}-\mathrm{OH}_{2}\right)$ (\AA)	NBO^{a} $($ a.u. $)$	MKUFF b $($ a.u. $)$	CHelpG c $($ a.u. $)$	HLYGAt d $($ a.u. $)$
1	$\mathrm{~A}\left(\mu_{2}\right)$	-14271.4963027	23.026	2.171	-0.9212	-0.8996	-0.8946	-0.7597
2	$\mathrm{~B}\left(\mu_{2}\right)$	-14271.5005239	20.378	2.166	-0.9379	-0.9492	-0.9098	-0.7476
3	$\mathrm{C}\left(\mu_{2}\right)$	-14271.5026127	19.067	2.167	-0.9279	-0.9000	-0.8750	-0.7821
4	$\mathrm{D}\left(\mu_{2}\right)$	-14271.5050184	17.557	2.169	-0.9355	-0.9091	-0.8667	-0.7774
5	$\mathrm{E}\left(\mu_{2}\right)$	-14271.5088241	15.169	2.168	-0.9404	-0.9243	-0.8716	-0.7510
6	$\mathrm{~F}\left(\mu_{2}\right)$	-14271.5098391	14.532	2.162	-0.9381	-0.9236	-0.8859	-0.7524
7	$\mathrm{G}\left(\mu_{2}\right)$	-14271.5061181	16.867	2.164	-0.9325	-0.9560	-0.8883	-0.7946
8	$\mathrm{H}\left(\mu_{2}\right)$	-14271.5040763	18.148	2.171	-0.9344	-0.9112	-0.9134	-0.7677
9	$\mathrm{I}\left(\mu_{2}\right)$	-14271.5322401	0.476	2.156	-0.9581	-0.9626	-0.9230	-0.8581
10	$\mathrm{~J}\left(\mu_{2}\right)$	-14271.5329979	0	2.160	-0.9614	-0.9553	-0.9477	-0.8166
11	$\mathrm{~K}\left(\mu_{3}\right)$	-14271.5104687	14.137	2.167	-1.0928	-1.0320	-1.0141	-1.0917
12	$\mathrm{~L}\left(\mu_{2}\right)$	-14271.4999138	20.760	2.162	-0.9422	-0.9318	-0.8967	-0.8009
13	$\mathrm{M}(\eta)$	-14271.4608424	45.278	2.165	-0.7634	-0.7086	-0.7474	-0.6412
14	$\mathrm{~N}(\eta)$	-14271.4515435	51.113	2.167	-0.7908	-0.7139	-0.7506	-0.6506
15	$\mathrm{O}(\eta)$	-14271.4604518	45.523	2.170	-0.7639	-0.7067	-0.7492	-0.6384
16	$\mathrm{P}(\eta)$	-14271.4468487	54.059	2.175	-0.7537	-0.6858	-0.7261	-0.6226
17	$\mathrm{Q}(\eta)$	-14271.4482246	53.196	2.172	-0.7561	-0.6903	-0.7211	-0.6281

${ }^{a}$ Natural atomic charges from Natural Bond Order analysis.[1] ${ }^{b}$ The Mesler-Singh-Kollman scheme, using UFF radii.[2] ${ }^{c}$ Breneman's modified CHelp scheme, using radii of 1.39 and $1.80 \AA$ for Zn and W, respectively.[3] ${ }^{d}$ The Hu, Lu, and Yang charge fitting method using G09 standard atom densities.[4] The most negatively charged oxygen for each method is given in italics.

Table S2: Energies and bond distances in $\mathrm{H}_{2}\left[\mathrm{Zn}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\left(\mathrm{PW}_{9} \mathrm{O}_{34}\right)_{2}\right]^{8-}$ (left) and $\mathrm{H}_{4}\left[\mathrm{Zn}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\left(\mathrm{PW}_{9} \mathrm{O}_{34}\right)_{2}\right]^{6-}$ (right) as a function of protonation site. Geometries optimised at pbe0/def-svp with PCM. The $\mathrm{d}\left(\mathrm{M}-\mathrm{OH}_{2}\right)$ in the non-protonated form is $2.192 \AA$.

Entry	Site	$\left(\mathrm{H}_{2}\left[\mathrm{Zn}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\left(\mathrm{PW}_{9} \mathrm{O}_{34}\right)_{2}\right]^{8-}\right)$			$\left(\mathrm{H}_{4}\left[\mathrm{Zn}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\left(\mathrm{PW}_{9} \mathrm{O}_{34}\right)_{2}\right]^{6-}\right)$		
		${ }_{2}$	$\Delta \epsilon$	H_{2})	4	$\Delta \epsilon$	$\mathrm{d}\left(\mathrm{M}-\mathrm{OH}_{2}\right)$
		(Hartree)	(kcal/mol)	(\AA)	(Hartree)	(kcal/mol)	(\AA)
1	I	-14271.5322401	0.476	2.156	-14272.4578948	-0.294	2.119
2	J	-14271.5329979	0	2.160	-14272.4574264	0	2.132
3	K	-14271.5104687	14.137	2.167	-14272.4146286	26.856	2.130

$\overline{\Delta \epsilon}$ given relative to the lowest energy configuration for each protonation state.

Table S3: Energies and bond distances in $\mathrm{H}_{2}\left[\mathrm{Zn}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\left(\mathrm{PW}_{9} \mathrm{O}_{34}\right)_{2}\right]^{8-}$ (left) and $\mathrm{H}_{4}\left[\mathrm{Zn}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\left(\mathrm{PW}_{9} \mathrm{O}_{34}\right)_{2}\right]^{6-}$ (right) as a function of protonation site. Geometries optimised at pbe0/def2-tzvp with PCM. The $\mathrm{d}\left(\mathrm{M}-\mathrm{OH}_{2}\right)$ in the non-protonated form is $2.236 \AA$.

Entry	Site	$\left(\mathrm{H}_{2}\left[\mathrm{Zn}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\left(\mathrm{PW}_{9} \mathrm{O}_{34}\right)_{2}\right]^{8-}\right)$			$\left(\mathrm{H}_{4}\left[\mathrm{Zn}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\left(\mathrm{PW}_{9} \mathrm{O}_{34}\right)_{2}\right]^{6-}\right)$		
		ϵ (Hartree)	$\Delta \epsilon(\mathrm{kcal} / \mathrm{mol})$	$\mathrm{d}\left(\mathrm{M}-\mathrm{OH}_{2}\right)(\AA)$	ϵ (Hartree)	$\Delta \epsilon(\mathrm{kcal} / \mathrm{mol})$	$\mathrm{d}\left(\mathrm{M}-\mathrm{OH}_{2}\right)(\AA)$
1	A (μ_{2})	-14279.3302237	22.038	2.207	-	-	-
2	B (μ_{2})	-14279.3322006	20.798	2.199	-	-	-
3	C (μ_{2})	-14279.3341081	19.601	2.199	-	-	-
4	D (μ_{2})	-14279.3372344	17.639	2.202	-	-	-
5	E $\left(\mu_{2}\right)$	-14279.3383597	16.933	2.200	-	-	-
6	F (μ_{2})	-14279.3391176	16.457	2.193	-	-	-
7	$\mathrm{G}\left(\mu_{2}\right)$	-14279.3357358	18.579	2.199	-	-	-
8	H $\left(\mu_{2}\right)$	-14279.3386754	16.735	2.205	-	-	-
9	I (μ_{2})	-14279.3653335	0.007	2.183	-14280.2894352	0.200	2.138
10	J (μ_{2})	-14279.3653439	0	2.190	-14280.2897538	0	2.152
11	K (μ_{3})	-14279.3439098	13.450	2.202	-14280.2457475	27.614	2.153
12	$\mathrm{L}\left(\mu_{2}\right)$	-14279.3321491	20.830	2.193	-	-	-
13	M (η)	-14279.3001521	40.908	2.197	-	-	-
14	$\mathrm{N}(\eta)$	-14279.2907393	46.815	2.202	-	-	-
15	$\mathrm{O}(\eta)$	-14279.2997023	41.190	2.202	-	-	-
16	$\mathrm{P}(\eta)$	-14279.2845071	50.725	2.209	-	-	-
17	Q (η)	-14279.2861521	49.693	2.207	-	-	-

Table S4: Bond parameters obtained from crystal structures, and rates of aquo-ligand exchange. Average bond distances were used where there were several different types of water ligands.

Entry	Compound	M-O bond distance $(\AA)^{a}$	$\left.\mathrm{k}\left(\mathrm{s}^{-1}\right)\right)$	References
1	$\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$	2.030	$4.4 \cdot 10^{4}$	Structure,[5] and rate.[6]
2	$\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$	2.030	$3.2 \cdot 10^{4}$	Structure,[5] and rate.[7]
3	$\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\left(\mathrm{NCS}_{4}\right]^{2-}\right.$	2.071	$1.1 \cdot 10^{6}$	Structure,[8] and rate.[9]
4	$\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\left(\mathrm{NH}_{3}\right)_{3}\right]^{2+}$	2.085	$2.5 \cdot 10^{5}$	Structure, $[10]$ and rate.[9]
5^{b}	$\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}(\mathrm{en})\right]^{2+}$	2.088	$4.4 \cdot 10^{5}$	Structure,[11] and rate. $[6]$
6	$\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}(\text { (bipyridyl })_{2}\right]^{2+}$	2.090	$6.6 \cdot 10^{4}$	Structure, $[12]$ and rate. $[9]$
7	$\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}\left(\mathrm{NH}_{3}\right)\right]^{2+}$	2.104	$1.6 \cdot 10^{5}$	Structure,[10] and rate.[13]

${ }^{a}$ Metal-to-oxygen distance. ${ }^{b}$ en $=$ ethylenediamine.

Figure S2: Top: $\mathrm{Zn}-\mathrm{OH}_{2}$ distance as a function of basis set. Bottom: r vs protonation site, where r is the $\mathrm{Zn}-\mathrm{OH}_{2}$ distance as a function of basis set divided by the $\mathrm{Zn}-\mathrm{OH}_{2}$ distance in the unprotonated complex at the same level of theory. Def2-svp results given as red squares and def2-tzvp data given as empty blue circles. The larger basis set gives longer absolute $\mathrm{Zn} \overline{7} \mathrm{OH}_{2}$ distances, but also predicts a larger contraction due to protonation.

Figure S3: Comparison of partial charges from different methods at pbe0/def2-svp with relative energies of $\mathrm{H}_{2}\left[\mathrm{Zn}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\left(\mathrm{PW}_{9} \mathrm{O}_{34}\right)_{2}\right]^{8-}$ protonated in different loci. All partial charges methods indicate that site K $\left(\mu_{3}\right)$ has the most negative partial charge.

References

[1] E. D. Glendening, J. K. Badenhoop, A. E. Reed, J. E. Carpenter, J. A. Bohmann, C. M. Morales, C. R. Landis, F. Weinhold, NBO 6.0, http://nbo6.chem.wisc.edu/.
[2] B. H. Besler, K. M. Merz, P. A. Kollman, J. Comp. Chem. 1990, 11, 431-439.
[3] C. M. Breneman, K. B. Wiberg, J. Comp. Chem. 1990, 11, 361-373.
[4] H. Hu, Z. Lu, W. Yang, J. Chem. Theory Comp. 2007, 3, 1004-1013, PMID: 26627419.
[5] J. E. Morris, P. J. Squattrito, K. Kirschbaum, A. A. Pinkerton, J. Chem. Cryst. 2003, 33, 307-321.
[6] A. G. Desai, H. W. Dodgen, J. P. Hunt, J. Am. Chem. Soc. 1969, 91, 5001-5004.
[7] Y. Ducommun, K. E. Newman, A. E. Merbach, Inorg. Chem. 1980, 19, 3696-3703.
[8] S. Sain, R. Saha, G. Pilet, D. Bandyopadhyay, J. Mol. Struct. 2010, 984, 350 - 353.
[9] J. Hunt, Coord. Chem. Rev. 1971, 7, 1 - 10.
[10] A. F. Benedetto, P. J. Squattrito, F. Adani, E. Montoneri, Inorg. Chim. Acta 1997, 260, $207-216$.
[11] G. J. McDougall, R. D. Hancock, Dalton Trans. 1980, 654-658.
[12] Y. Rodríguez-Martín, J. González-Platas, C. Ruiz-Pérez, Acta Cryst. C 1999, 55, 1087-1090.
[13] S. Marks, H. W. Dodgen, J. P. Hunt, Inorg. Chem. 1968, 7, 836-837.

