Supporting Information

Noble metal-free 0D-1D NiS_x/CdS nanocomposite toward highly efficient photocatalytic contaminations removal and hydrogen evolution under visible light

Sugang Meng*^{abd}, Yanjuan Cui^c, Hao Wang^c, Xiuzhen Zheng^a, Xianliang Fu^a and Shifu Chen^{*a}

^a College of Chemistry and Materials Science, Huaibei Normal University, Anhui Huaibei, 235000,

P. R. China.

^b State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou,
350116, P. R. China.

^c School of Environmental and Chemical Engineering, Jiangsu University of Science and

Technology, Zhenjiang, Jiangsu 212003, P. R. China.

^d Anhui Key Laboratory of Energetic Material, Anhui Huaibei, 235000, P. R. China.

* Corresponding Authors, Tel: +86-561-3803225, Fax: +86-561-3803225. E-mail:

mengsugang@126.com, chshifu@chnu.edu.cn.

Figure S1. XPS survey spectrum of the 1.5% NiS_x/CdS-NRs.

Figure S2. TEM image of the 10% NiS_x/CdS-NRs.

Figure S3. SEM image of the CdS-C.

Figure S4. SEM image of the CdS-NPs.

Figure S5. XRD patterns of the CdS-C and CdS-NPs.

Figure S6. (a) TEM image and (b) H₂-evolution photocatalytic activity of the 1.5% Pt/CdS-NRs sample.

Figure S7. SEM image of the used 1.5% NiS_x/CdS-NRs.

Table S1. Comparison of H_2 evolution performance among different NiS_x/CdS composite photocatalysts.

Morphology	Shape of NiS_x	AQE at 420 nm	Reaction	Ref.
of CdS		(%)	Temperture (°C)	
Polyhedral	Nanoparticles	60.4	35	[1]
plate	Nanoparticles	16.8	20	[2]
1D nanorod	2D nanosheets	69.9	10	This work

Figure S8. XRD patterns of $g-C_3N_4$ and $Zn_3In_2S_6$.

The g-C₃N₄ powders were synthesized by heating urea in a tube furnace. A certain amount of melamine was put into the alumina crucible, which was heated at 520 $^{\circ}$ C for 2 h with a temperature rise rate of 5 $^{\circ}$ C min⁻¹. After the reaction, the alumina crucible was cooled naturally to room temperature.

Zn₃In₂S₆ was prepared by a hydrothermal method. In a typical procedure, 2 mmol InCl₃ 4H₂O, 3 mmol ZnSO₄ 7H₂O and a double excess of CH₃CSNH₂ were dissolved in 70 mL of deionized water. The mixed solution was further transferred into a 100 mL Teflon-lined autoclave. The autoclave was sealed and heated at 160 \degree for 12 h, and then cooled down to room temperature. A light yellow precipitate was washed with absolute ethanol and deionized water for several times. Finally, the obtained product was dried in a vacuum oven at 60 \degree .

Figure S9. TEM image of g-C₃N₄.

Figure S10. TEM image of $Zn_3In_2S_6$.

Figure S11. H₂ evolution rates of different samples.

Reaction conditions for g-C₃N₄ and 1.5% NiS_x/g-C₃N₄: 0.1 g photocatalyst, 110 mL of aqueous solution of triethanolamine (10 mL), 300 W Xe-lamp with 365 nm cutoff filter. Reaction conditions for Zn₃In₂S₆ and 1.5% NiS_x/Zn₃In₂S₆: 0.1 g photocatalyst, 110 mL of aqueous solution of lactic acid (1.22 M), 300 W Xe-lamp with 400 nm cutoff filter.

Figure S12. Concentration changes of Cr(VI), RhB and BPA as the function of the irradiation time by CdS-NRs and 1.5% NiS_x/CdS-NRs (blank presents the reaction system without photocatalyst).

Figure S13. Photocatalytic degradation of RhB over the 1.5% NiS_x/CdS-NRs photocatalyst during repetition operation under visible light irradiation.

Figure S14. H_2O_2 was detected by addition of N, N-diethyl-p-phenylenediamine and horeradish peroxidase to the deionized water (blank), CdS-NRs and NiS_x/CdS-NRs aqueous solutions after 60 min visible-light irradiation.

References

[1] Z. Qin, Y. Chen, X. Wang, X. Guo and L. Guo, ACS Appl. Mater. Interfaces, 2016, 8, 1264.

[2] Y. Xu, W. Tu, S. Yin, M. Kraft, Q. Zhang and R. Xu, Dalton Trans., 2017, 46, 10650.