Supporting Information for

Controllable Synthesis of Up-Conversion Luminescent Gd/Tm-MOFs

promising for pH-Responsive Delivery and Dual-Modal Imaging

Table of Contents:

Supporting Figures

Figure S1. Pie chart of Reports on MOFs with up-conversion luminescence.

Figure S2. Pie chart of reports on multifunctional materials integrating with UCL/MRI.

Figure S3. Pie chart of reports on application of Gd-MOFs and Tm-MOFs.

Figure S4. The decay curves for the ${}^{1}D_{2} \rightarrow {}^{3}F_{4}$ emissions of Tm³⁺ in Gd/Tm-MOFs.

Figure S5. The dynamic light scattering of Gd/Tm-MOFs, Gd/Tm-MOFs@mSiO₂-FA, respectively.

Figure S6. The EDS of Gd/Tm-MOFs@mSiO₂-FA.

Figure S7. N_2 adsorption and desorption isotherm, and pore-size distributions of Gd/Tm-MOFs, Gd/Tm-MOFs@mSiO₂.

Figure S8. Pie chart of distribution DOX release percent.

Figure S9. Pie chart of reports on Gd^{3+} as T_1 -MRI contrast agents.

Supporting Tables

Table S1. Reports on Gd/Tm-MOFs with up-conversion luminescence.

Table S2. Homogenous materials integrating with UCL/MRI.

 Table S3. Applications of Gd-MOFs and Tm-MOFs.

Table S4. Selected bond lengths [Å] and angles [°] for RE(BTC)•(H₂O)•DMF.

Table S5. List of composites based on the mesoporous silica for DOX delivery.

Table S6. Examples of Gd^{3+} as excellent T₁-MRI contrast agents.

Metal ions	Ligand	Excitation wavelength (nm)	Lifetime (µs)	Quantu m Yield	Application	Ref
Tb ³⁺	N-[2-(bis{2-[(2- methoxybenzoyl)amino] ethyl}amino)ethyl] -2- methoxybenzamide	845	_	_	_	1
Y ³⁺ , Yb ³⁺ , Er ³⁺	1,4-benzenedicarboxylate	980		_	_	2
Y ³⁺ , Er ³⁺	1,3,5- benzenetricarboxylic acid	980	113.89	_	Ibuprofen delivery	3
Y ³⁺ , Yb ³⁺ , Er ³⁺	Oxalate anion and 4,4'- oxybis(benzoic acid)	980	_	_	_	4
Y ³⁺ , Yb ³⁺ , Er ³⁺	2,3-pyrazinedicarboxylic acid	975	_	_	_	5
Y ³⁺ , Yb ³⁺ , Er ³⁺	pyrazine-2,3-carboxylic acid	974	_	_	_	6
Nd ³⁺ /Gd ³⁺ /Pr ³⁺ /Ce ³⁺ / Sm ³⁺	anthracene dicarboxylate & dimethylacetamide	800	_	_	_	7
Er ³⁺ /Ho ³⁺ , Na ⁺	pyrazine-2,3,5- tricarboxylate	980	_	_	_	8
Er ³⁺		980	_	_	_	9
Gd ³⁺ , Tm ³⁺	1,3,5- benzenetricarboxylic acid	980	τ=379±2	0.76 %	Drug delivery, UCL/MRI dual-mode imaging	This work

Table S1. Reports on MOFs with UCL.

Figure S1. Pie chart of reports on MOFs with up-conversion luminescence.

- Wong, K. L.; Kwok, W. M.; Wong, W. T.; Phillips, D. L.; Cheah, K. W. Green and Red Three-Photon Upconversion from Polymeric Lanthanide(III) Complexes. *Angew. Chem.* 2004, *116*, 4759–4762.
- Weng, D. F.; Zheng, X. J.; Jin, L. P. Assembly and Upconversion Properties of Lanthanide Coordination Polymers Based on Hexanuclear Building Blocks with (μ₃-OH) Bridges. *Eur. J. Inorg. Chem.* **2006**, 4184–4190.
- 3. Zhang, X. D.; Li, B.; Ma, H. P.; Zhang, L. M.; Zhao, H. F. Metal–Organic Frameworks Modulated by Doping Er³⁺ for Up-Conversion Luminescence. ACS Appl. Mat. Interfaces. 2017, 9, 2594–2605.
- 4. Sun, C. Y.; Zheng, X. J.; Chen, X. B.; Li, L. C.; Jin, L. P. Assembly and Upconversion Luminescence of Lanthanide–Organic Frameworks with Mixed Acid Ligands. *Inorg. Chim. Acta* 2009, 362, 325–330.
- 5. Weng, D.F.; Zheng, X.J.; Chen, X.B.; Li, L.C.; Jin, L.P. Synthesis, Upconversion Luminescence and Magnetic Properties of New Lanthanide-Organic Frameworks with (4³)₂(4⁶, 6⁶, 8³) Topology. *Eur. J. Inorg. Chem.* **2007**, *21*, 3410–3415.
- 6. Giedraityte, Z. Tuomisto, M. Lastusaari, M. Karppinen, M. Three- and Two-Photon NIR-to-Vis (Yb,Er) Upconversion from ALD/MLD-Fabricated Molecular Hybrid Thin Films. ACS Appl. Mater. Interfaces 2018, 10 (10), 8845–8852.
- Quah, H. S.; Ng, L. T.; Donnadieu, B.; Tan, G. K.; Vittal, J. J. Molecular Scissoring: Facile 3D to 2D Conversion of Lanthanide Metal Organic Frameworks Via Solvent Exfoliation. *Inorg. Chem.* 2016, 55, 10851–10854.
- 8. Zheng, X. J.; Ablet, A.; Ng, C.; Wong, W. T. Intensive Upconversion Luminescence of Na-Codoped Rare-Earth Oxides with a Novel RE–Na Heterometallic Complex as Precursor. *Inorg. Chem.* 2014, *53*, 6788–6793.
- 9. Nonat, A.; Chan, C. F.; Liu, T.; Platas-Iglesias, C.; Liu, Z.; Wong, W. T.; Wong, W. K.; Wong, K. L.; Charbonnière, L. J. Room Temperature Molecular Up Conversion in Solution. *Nat. Commun.* **2016**, *7*, 11978.

Structure of materials	Application	Ref
Gd ₂ O ₃ :Yb ³⁺ /Ln ³⁺ UCNs	UCL, MRI	1–3
Gd ₂ O ₃ :Yb ³⁺ /Er ³⁺	UCL, MRI, CT	4
Gd ₂ O ₃ hollow spheres	Drug delivery, UCL, MRI	5
GdPO ₄ :Yb,Er	UCL, MRI	6
$NaY_{0.2}Gd_{0.6}Yb_{0.18}Er_{0.02}F_{4}$	UCL, MRI, PET	7
BaGdF ₅ :Yb/Er	UCL, MRI, CT	8
NaGdF ₄ : Yb ³⁺ , Ln ³⁺	UCL, MRI	9–13
NaLuF ₄ :Yb ³⁺ , Tm ³⁺ , Gd ³⁺	UCL, MRI	14
$Gd^{3+}-Zn_{2.94}Ga_{1.96}Ge_2O_{10}:Cr^{3+},Pr^{3+}$	UCL, MRI	15
$Dy_2O_3:Tb^{3+}$	UCL, MRI	16
Gd ₂ Mo ₃ O ₉ : Er ³⁺ /Yb ³⁺	UCL, MRI	17
NaYbF ₄ : Tm ³⁺ /Gd ³⁺	UCL, MRI	18
BaYbF ₅ :Gd/Er	UCL, MRI, CT	19
$Ba_2GdF_7:Yb^{3+}, Er^{3+}$	UCL, MRI	20
NaYF ₄ : Yb ³⁺ , Er ³⁺ /Gd ³⁺	UCL, MRI, CT	21
β -Ca ₃ (PO ₄) ₂ : Gd ³⁺ , Dy ³⁺ , Yb ³⁺	UCL, MRI, CT	22
Mn ²⁺ doped NaLuF ₄ :Yb/Er	UCL, MRI, CT	23
$(Gd^{3+}, Tm^{3+})(BTC)\bullet(H_2O)\bullet DMF$	Drug delivery, UCL, MRI	This work

Table S2. Homogenous materials integrating with UCL/MRI.

Figure S2. Pie chart of reports on multifunctional materials integrating with UCL/MRI.

- Liu, J.; Huang, L.; Tian, X. M.; Chen, X. M.; Shao, Y. G.; Xie, F. K.; Chen, D. H.; Li, L. Magnetic and Fluorescent Gd₂O₃:Yb³⁺/Ln³⁺ Nanoparticles for Simultaneous Upconversion Luminescence/MR Dual Modal Imaging and NIR-Induced Photodynamic Therapy. *Int. J. Nanomed.* 2017, *12*, 1–14.
- Zhou, L. J.; Gu, Z. J.; Liu, X. X.; Yin, W. Y.; Tian, G.; Yan, L.; Jin, S.; Ren, W. L.; G. Xing, M.; Li, W.; Chang, X. L.; Hu, Z. B.; Zhao, Y. L. Size-Tunable Synthesis of Lanthanide-Doped Gd₂O₃ Nanoparticles and Their Applications for Optical and Magnetic Resonance Imaging. *J. Mater. Chem.* 2012, *22*, 966–974.
- Das, G. K.; Heng, B. C.; Ng, S. C.; White, T.; Loo, J. S. C.; D'Silva, L.; Padmanabhan, P.; Bhakoo, K. K.; Selvan, S. T.; Tan, T. T. Y. Gadolinium Oxide Ultranarrow Nanorods as Multimodal Contrast Agents for Optical and Magnetic Resonance Imaging. *Langmuir*. 2010, 26, 8959–8965.
- Liu, Z.; Pu, F.; Huang, S.; Yuan, Q.; Ren, J.; Qu, X. Long-Circulating Gd₂O₃:Yb³⁺, Er³⁺ Up-Conversion Nanoprobes as High-Performance Contrast Agents for Multi-Modality Imaging. *Biomaterials* 2013, 34, 1712–1721.
- Tian, G.; Gu, Z. J.; Liu, X. X.; Zhou, L. J.; Yin, W. Y.; Yan, L.; Jin, S.; Ren, W. L.; Xing, G. M.; Li, S. J.; Zhao, Y. L. Facile Fabrication of Rare-Earth-Doped Gd₂O₃ Hollow Spheres with Upconversion Luminescence, Magnetic Resonance, and Drug Delivery Properties. *J. Phys. Chem. C* 2011, *115*, 23790–23796.
- Ren, W. L.; Tian, G.; Zhou, L. J.; Yin, W. Y.; Yan, L.; Jin, S.; Zu, Y.; Li, S. J.; Gu, Z. J.; Zhao, Y. L. Lanthanide Ion-Doped GdPO₄ Nanorods with Dual-Modal Bio-Optical and Magnetic Resonance Imaging Properties. *Nanoscale* 2012, *4*, 3754–3760.
- Zhou, J.; Yu, M. X.; Sun, Y.; Zhang, X. Z.; Zhu, X. J.; Wu, Z. H.; Wu, D. M.; Li, F. Y. Fluorine-18-Labeled Gd³⁺/Yb³⁺/Er³⁺ Co-Doped NaYF₄ Nanophosphors for Multimodality

PET/MR/UCL Imaging. Biomaterials 2011, 32, 1148–1156.

- Zeng, S.; Tsang, M. K.; Chan, C. F.; Wong, K. L.; Hao, J. PEG Modified BaGdF₅:Yb/Er Nanoprobes for Multi-Modal Upconversion Fluorescent, in *Vivo* X-Ray Computed Tomography and Biomagnetic Imaging. *Biomaterials* 2012, *33*, 9232–9238.
- Zhou, J.; Sun, Y.; Du, X.; Xiong, L.; Hu, H.; Li, F. Y. Dual-Modality in *Vivo* Imaging Using Rare-Earth Nanocrystals with Near-Infrared to Near-Infrared (NIR-to-NIR) Upconversion Luminescence and Magnetic Resonance Properties. *Biomaterials* 2010, 31, 3287–3295.
- Ryu, J.; Park, H. Y.; Kim, K.; Kim, H.; Yoo, J. H.; Kang, M.; Im, K.; Grailhe, R.; Song, R. Facile Synthesis of Ultrasmall and Hexagonal NaGdF₄: Yb³⁺, Er³⁺ Nanoparticles with Magnetic and Upconversion Imaging Properties. *J. Phys. Chem. C* 2010, *114*, 21077–21082.
- Lee, J.; Lee, T. S.; Ryu, J.; Hong, S.; Kang, M.; Im, K.; Kang, J. H.; Lim, S. M.; Park, S.; Song, R. RGD Peptide–Conjugated Multimodal NaGdF₄:Yb³⁺/Er³⁺ Nanophosphors for Upconversion Luminescence, MR, and PET Imaging of Tumor Angiogenesis. *J. Nucl. Med.* 2013, *54*, 96–103.
- Liu, C. Y.; Gao, Z. Y.; Zeng, J. F.; Hou, Y.; Fang, F.; Li, Y. L.; Qiao, R. R.; Shen, L.; Lei, H.; Yang, W. S.; Gao, M. Y. Magnetic/Upconversion Fluorescent NaGdF₄:Yb,Er Nanoparticle-Based Dual-Modal Molecular Probes for Imaging Tiny Tumors *in Vivo. ACS nano* 2013, 7, 7227–7240.
- Chen, H. Y.; Qi, B.; Moore, T.; Colvin, D. C.; Crawford, T.; Gore, J. C.; Alexis, F.; Mefford, O. T.; Anker, J. N. Synthesis of Brightly PEGylated Luminescent Magnetic Upconversion Nanophosphors for Deep Tissue and Dual MRI Imaging. *Small* 2014, *10*, 160–168.
- Zeng, S. J.; Xiao, J. J.; Yang, Q. B.; Hao, J. H. Bi-Functional NaLuF₄:Gd³⁺/Yb³⁺/Tm³⁺ Nanocrystals: Structure Controlled Synthesis, Near-Infrared Upconversion Emission and Tunable Magnetic Properties. *J. Mater. Chem.* 2012, *22*, 9870–9874.
- Zhou, J.; Zhu, X.; Chen, M.; Sun, Y.; Li, F. Y. Water-Stable NaLuF₄-Based Upconversion Nanophosphors with Long-Term Validity for Multimodal Lymphatic Imaging. *Biomaterials* 2012, *33*, 6201–6210.
- Wang, H. B.; Lu, W.; Zeng, T. M.; Yi, Z. G.; Rao, L.; Liu, H. R.; Zeng, S. J. Multi-Functional NaErF₄:Yb Nanorods: Enhanced Red Upconversion Emission, *in Vitro* Cell, *in Vivo* X-Ray, and T₂-Weighted Magnetic Resonance Imaging. *Nanoscale*, **2014**, *6*, 2855–2860.
- Das, G. K.; Zhang, Y.; D'Silva, L.; Padmanabhan, P.; Heng, B. C.; Loo, J. S. C.; Selvan, S. T.; Bhakoo, K. K.; Tan, T. T. Y. Single-Phase Dy₂O₃:Tb³⁺ Nanocrystals as Dual-Modal Contrast Agent for High Field Magnetic Resonance and Optical Imaging. *Chem. Mater.* 2011, 23, 2439–2446.
- Xue, Z.; Yi, Z.; Li, X.; Li, Y.; Jiang, M.; Liu, H. Upconversion Optical/Magnetic Resonance Imaging-Guided Small Tumor Detection and in Vivo Tri-Modal Bioimaging based on High-Performance Luminescent Nanorods. *Biomaterials* 2017, *115*, 90–103.

- Li, X.; Yi, Z.; Xue, Z.; Zeng, S.; Liu, H. Multifunctional BaYbF₅: Gd/Er Upconversion Nanoparticles for *in Vivo* Tri-Modal Upconversion Optical, X-Ray Computed Tomography and Magnetic Resonance Imaging. *Mater. Sci. Eng. C* 2017, 75, 510–516.
- Feng, Y.; Chen, H.; Ma, L.; Shao, B.; Zhao, S.; Wang, Z. Surfactant-Free Aqueous Synthesis of Novel Ba₂GdF₇:Yb³⁺, Er³⁺@PEG Upconversion Nanoparticles for in Vivo Trimodality Imaging. *ACS Appl. Mater. Interfaces* 2017, *9*, 1–17.
- Liu, Q.; Sun, Y.; Li, C. G.; Zhou, J.; Li, C. Y.; Yang, T. S.; Zhang, X. Z.; Yi, T.; Wu, D. M.; Li, F. Y. ¹⁸F-Labeled Magnetic-Upconversion Nanophosphors via Rare-Earth Cation-Assisted Ligand Assembly. *ACS Nano* 2011, *5*, 3146–3157.
- Meenambal, R.; Kannan, S. Cosubstitution of Lanthanides (Gd³⁺/Dy³⁺/Yb³⁺) in β-Ca₃(PO₄)₂ for Upconversion Luminescence, CT/MRI Multimodal Imaging. *ACS Biomater. Sci. Eng.* 2017, 47–56.
- 23. Deng, H. L.; Huang, S.; Xu, C. Intensely Red-Emitting Luminescent Upconversion Nanoparticles for Deep-Tissue Multimodal Bioimaging. *Talanta*, **2018**, 1–22.

Metal ions	Ligand	Structure	Application	Ref
	N-(4-carboxybenzyl)-(3,5- dicarboxyl)pyridinium bromide (H ₃ CmdcpBr)	{[Gd(Cmdcp)- (H ₂ O) ₃](NO ₃)·3H ₂ O} _n	In vivo MRI	1
	1,4-benzenedicarboxylate and 1,2,4-benzenetricarboxylate methyl ammonium salts	Gd MOF	MRI	2
	PT1	[Gd ₆ (PT1) ₄ (NO ₃) ₆ - 9H] ³⁺	MRI glucosamine	3
Gd ³⁺	1,4-bis(5-carboxy-1H- benzimidazole-2yl)benzene (pDBI)	Gd-pDBI	Bimodal MRI	4
	1,4-BDC	Gd•(1,4-BDC)	Targeting and MRI	5
	terephthalic acid	Gd-MOF	Bimodal MRI	6
	Benzenehexacarboxylatemoiet y (bhc)	[Gd ₂ (bhc)(H ₂ O) ₈](H ₂ O) 2	Multimodal imaging	7
	5-(4-carboxy-2-nitrophenoxy)- isophthalic acid (H ₃ L)	[TmL(DMF) ₂]•0.25H ₂ O	_	8
Tm ³⁺	1,3,5-tris(4-carboxyphenyl)- 2,4,6-trimethylbenzene (H ₃ L)	[Tm ₂ (L) ₂ (H ₂ O) ₃]•2H ₂ O	Sensing and adsorption	9
	1,3,5-benzenetricarboxylic acid	Tm(BTC)(DMF) ₂ •H ₂ O	_	10
	1,4-benzenedicarboxylic acid (H ₂ BDC)	Tm ₂ (TBDC) ₃ (DMF) ₂ (H ₂ O) ₂ •4H ₂ O	Adsorption	11

1,10-phenanthroline, 2,2'-bipyridine, or triphenyl phosphate oxide		Ln(tta) ₃ L		12
	succinic acid (H ₂ L)	$[\mathrm{Tm}_2(\mathrm{L})_3(\mathrm{H}_2\mathrm{O})_2]\bullet\mathrm{H}_2\mathrm{O}$		13
	monophenanthroline	Tm(acetylacetonato) ₃ monophenanthroline	_	14
	tris-(dibenzoylmethanato)- mono-(bathophenanthroline)	Tm(DBM) ₃ bath		15
Gd ³⁺ , Tm ³⁺	1,3,5-benzenetricarboxylic acid	(Gd ³⁺ ,Tm ³⁺)(BTC)•(H ₂ O)•DMF	drug delivery, UCL and MRI	This work

Figure S3. Pie chart of reports on application of Gd-MOFs and Tm-MOFs.

- Qin, L.; Sun, Z. Y.; Cheng, K.; Liu, S. W.; Pang, J. X.; Xia, L. M.; Chen, W. H.; Cheng, Z.; Chen, J.X. Zwitterionic Manganese and Gadolinium Metal-Organic Frameworks as Efficient Contrast Agents for *in Vivo* Magnetic Resonance Imaging. *ACS Appl. Mater. Interfaces* 2017, 9, 1–9.
- Hatakeyama, W.; Sanchez, T. J.; Rowe, M. D.; Serkova, N. J.; Liberatore, M. W.; Boyes, S. G. Synthesis of Gadolinium Nanoscale Metal-Organic Framework with Hydrotropes: Manipulation of Particle Size and Magnetic Resonance Imaging Capability. *ACS Appl. Mater. Interfaces* 2011, *3*, 1502–1510.
- He, C.; Wu, X.; Kong, J. C.; Liu, T.; Zhang, X. L.; Duan, C. Y. A Hexanuclear Gadolinium-Organic Octahedron as a Sensitive MRI Contrast Agent for Selectively Imaging Glucosamine in Aqueous Media. *Chem. Commun.* 2012, 48, 9290–9292.
- 4. Kundu, T.; Mitra, S.; Díaz Díaz, D.; Banerjee, R. Gadolinium(III)-Based Porous Luminescent

Metal–Organic Frameworks for Bimodal Imaging. ChemPlusChem, 2016, 81, 728–732.

- Rowe, M. D.; Thamm, D. H.; Kraft, S. L.; Boyes, S. G. Polymer-Modified Gadolinium Metal-Organic Framework Nanoparticles Used as Multifunctional Nanomedicines for the Targeted Imaging and Treatment of Cancer. *Biomacromolecules* 2009, *10*, 983–993.
- Tian, C. X.; Zhu, L. P.; Feng, L.; Boyes, S. G. Poly(acrylic acid) Bridged Gadolinium Metal-Organic Framework-Gold Nanoparticle Composites as Contrast Agents for Computed Tomography and Magnetic Resonance Bimodal Imaging. ACS Appl. Mater. Interfaces 2015, 7, 17765.
- Taylor, K. M.; Jin, A.; Lin, W. Surfactant-Assisted Synthesis of Nanoscale Gadolinium Metal-Organic Frameworks for Potential Multimodal Imaging. *Angew. Chem. Int. Ed.* 2008, 47, 7722–7725.
- Su, S. Q.; Wang, S.; Song, X. Z.; Song, S. Y.; Qin, C.; Zhu, M.; Hao, Z. M.; Zhao, S. N.; Zhang, H. J. Syntheses, Structures, Photoluminescence, and Magnetic Properties of (3,6)- and 4-Connected Lanthanide Metal-Organic Frameworks with a Semirigid Tricarboxylate Ligand. *Dalton Trans.* 2012, *41*, 4772–4779.
- Wang, X. Q.; Zhang, L. L.; Yang, J., Liu, F. L.; Dai, F. N.; Wang, R. M.; Sun, D. F. Lanthanide Metal–Organic Frameworks Containing a Novel Flexible Ligand for Luminescence Sensing of Small Organic Molecules and Selective Adsorption. *J. Mater. Chem. A* 2015, *3*, 12777–12785.
- Li, Z. Y.; Zhu, G. S.; Guo, X. D.; Zhao, X. J.; Jin, Z.; Qiu, S. L. Synthesis, Structure, and Luminescent and Magnetic Properties of Novel Lanthanide Metal-Organic Frameworks with Zeolite-like Topology. *Inorg. Chem.* 2007, *46*, 5174–5178.
- He, H.; Yuan, D.; Ma, H.; Sun, D.; Zhang, G.; Zhou, H. C. Control over Interpenetration in Lanthanide–Organic Frameworks: Synthetic Strategy and Gas-Adsorption Properties. *Inorg. Chem.* 2010, 49, 7605–7607.
- Dang, S.; Sun, L.N.; Zhang, H.J.; Guo, X.M.; Li, Z.F.; Feng, J.; Guo, H.D.; Guo, Z.Y. Near-Infrared Luminescence from Sol–Gel Materials Doped with Holmium(III) and Thulium(III) Complexes. J. Phys. Chem. C 2008, 112, 13240–13247.
- Oliveira, C. A. F. D.; Silva, F. F. D.; Malvestiti, I.; Malta, V. R. D. S.; Dutra, J. D. L.; Jr, N. B. D. C.; Freire, R. O.; Júnior, S. A. Effect of Temperature on Formation of Two New Lanthanide Metal-Organic Frameworks: Synthesis, Characterization and Theoretical Studies of Tm(III)-Succinate. *J. Solid State Chem.* 2013, 197, 7–13.
- Hong, Z. R.; Li, W. L.; Zhao, D. X.; Liang, C. J.; Liu, X. Y.; Peng, J. B.; Zhao, D. Spectrally-Narrow Blue Light-Emitting Organic Electroluminescent Devices Utilizing Thulium Complexes. *Synthetic Metals*, **1999**, *104*, 165–168.
- Zang, F. X.; Hong, Z. R.; Li, W. L.; Li, M. T.; Sun, X. Y. 1.4 μm Band Electroluminescence from Organic Light-Emitting Diodes Based on Thulium Complexes. *Appl. Phys. Lett.* 2004, 84, 2679–2681.

Figure S4. The decay curves for the ${}^{1}D_{2} \rightarrow {}^{3}F_{4}$ emissions of Tm³⁺ in Gd/Tm-MOFs.

RE(1)-O(3)#1	2.317(3)
RE(1)-O(3)#2	2.317(3)
RE(1)-O(1)	2.323(4)
RE(1)-O(1)#3	2.323(4)
RE(1)-O(2)#4	2.335(4)
RE(1)-O(2)#5	2.335(4)
RE(1)-O(4)	2.438(6)
O(2)-RE(1)#6	2.335(4)
O(3)-RE(1)#7	2.318(3)
O(3)#1-RE(1)-O(3)#2	138.74(19)
O(3)#1-RE(1)-O(1)	146.05(13)
O(3)#2-RE(1)-O(1)	74.92(13)
O(3)#1-RE(1)-O(1)#3	74.92(13)
O(3)#2-RE(1)-O(1)#3	146.05(13)
O(1)-RE(1)-O(1)#3	72.20(18)
O(3)#1-RE(1)-O(2)#4	90.07(15)
O(3)#2-RE(1)-O(2)#4	84.15(14)
O(1)-RE(1)-O(2)#4	89.66(16)
O(1)#3-RE(1)-O(2)#4	103.70(15)
O(3)#1-RE(1)-O(2)#5	84.15(14)
O(3)#2-RE(1)-O(2)#5	90.07(15)
O(1)-RE(1)-O(2)#5	103.70(15)
O(1)#3-RE(1)-O(2)#5	89.66(16)
O(2)#4-RE(1)-O(2)#5	163.6(2)
O(3)#1-RE(1)-O(4)	69.37(10)
O(3)#2-RE(1)-O(4)	69.37(10)
O(1)-RE(1)-O(4)	143.90(9)

Table S4. Selected bond lengths [Å] and angles [°] for $RE(BTC) \bullet (H_2O) \bullet DMF$.

O(1)#3-RE(1)-O(4)	143.90(9)
O(2)#4-RE(1)-O(4)	81.79(11)
O(2)#5-RE(1)-O(4)	81.79(11)
C(5)-O(1)-RE(1)	175.0(3)
C(5)-O(2)-RE(1)#6	123.4(3)
C(6)-O(3)-RE(1)#7	149.2(3)
RE(1)-O(4)-H(4A)	109.3

Symmetry transformations used to generate equivalent atoms:

#1 x,y-1,z	#2 y	,x-1,-z+5/4	#3 y+1,x-1,-z+5/4	#4 -y+1,x-1,z-1/4	#5 x,-y,-z+3/2
#6 y+1,-x+1,z+	1/4	#7 x,y+1,z			

Figure S5. The dynamic light scattering (DLS) of Gd/Tm-MOFs, Gd/Tm-MOFs@mSiO₂, respectively. The DLS suggests that the average width of Gd/Tm-MOFs was 450 nm and the width of Gd/Tm-MOFs@mSiO₂ was around 530 nm approximately. It demonstrates that the thickness of mesoporous SiO₂ shell was about 40 nm.

Figure S6. The EDS of Gd/Tm-MOFs@mSiO₂-FA. It determines that the elements of C, O, Si, Gd and Tm are distributed in Gd/Tm-MOFs@mSiO₂-FA composites.

Figure S7. N₂ adsorption (black symbols) and desorption (red symbols) isotherm (a, b) of Gd/Tm-MOFs measured at 77 K and the inset was BJH pore-size distributions of Gd/Tm-MOFs, Gd/Tm-MOFs@mSiO₂, respectively. The surface area of Gd/Tm-MOFs and Gd/Tm-MOFs@mSiO₂-FA is 22.48 m²/g and 43.71 m²/g respectively.

	DOX release	The		
Materials	Simulation pH of normal cells	Simulation pH of cancer cells	difference (%)	Ref
Fe ₃ O ₄ @GO@mSiO ₂	96	100	4	1
MSN-PEG	37	45	8	2
ICG/MSN@p(NIPAM-co-MA)	33	44.9	11.9	3
MSN	5	20	15	4
Pd@Ag@sSiO ₂ @mSiO ₂	7.2	26	18.8	5
MSN-NH ₂	45	69	24	6
MSN@PEM	9	34.25	25.25	7
MSN@PDA-PEG	35.5	65.5	30	8
HMSNs	3.5	37.5	34	9
sericin-coated MSNs	16.4	53.9	37.5	10
MSN@Gelatin	4	44	40	11
GQD-MSNs	7.4	48.6	41.2	12
PB@mSiO ₂ -PEG	3.1	46.6	43.5	13
α-CD@PEG-g- chitosan/Fe ₃ O ₄ @GO@SiO ₂	45	98	43	14
Ag-MSNs	5	50	45	15
MnFe ₂ O ₄ @HMSN@YbL (TTA)@DOX@cCTS	33.4	81.4	48	16
HPSN-Salphdc-FA	10	60	50	17
PDEAEMA-HMSNs	12	64	52	18
MSNs-NH-N=C-HA	10.12	65.62	55.5	19
MSN-PAA	10	70	60	4
MSN-PMA _{SH}	25	88	63	20
PAH/PSS-MSNTs	25	90	65	21
PAH-cit/APTES-MSNs	20	88	68	22

Table S5. List of composites based on the mesoporous silica for DOX delivery.

MSN@PSA-PEG-FA	5.8	78.4	72.6	23
CPT@MSN-hyd	15	90	75	24
Gd/Tm-MOF@SiO2-FA	12	64	52	This
				work

Figure S8. Pie chart of distribution DOX release percent.

- Pourjavadi, A.; Tehrani, Z. M.; Jokar, S. Functionalized Mesoporous Silica-Coated Magnetic Graphene Oxide by Polyglycerol-g-Polycaprolactone with pH-Responsive Behavior: Designed for Targeted and Controlled Doxorubicin Delivery. J. Ind. Eng. Chem. 2015, 28, 45–53.
- Zhang, Q.; Zhao, H. Y.; Li, D.; Liu, L. P.; Du, S. H. A Surface-Grafted Ligand Functionalization Strategy for Coordinate Binding of Doxorubicin at Surface of PEGylated Mesoporous Silica Nanoparticles: Toward pH-Responsive Drug Delivery. *Colloids Surf., B,* 2016, 149, 138–145.
- Shu, Y.; Song, R. S.; Zheng, A. Q.; Huang, J. L.; Chen, M. L.; Wang, J. H. Thermo/pH Dual-Stimuli-Responsive Drug Delivery for Chemo-/Photothermal Therapy Monitored by Cell Imaging. *Talanta*, 2018, 181, 278–285.
- Yuan, L.; Tang, Q. Q.; Yang, D.; Zhang, J. Z.; Zhang, F. Y.; Hu, J. H. Preparation of pH-Responsive Mesoporous Silica Nanoparticles and Their Application in Controlled Drug Delivery. J. Phys. Chem. C, 2011, 115(20), 9926–9932.
- Fang, W. J.; Yang, J.; Gong, J. W.; Zheng, N. F. Photo-and pH-Triggered Release of Anticancer Drugs from Mesoporous Silica-Coated Pd@Ag Nanoparticles. *Adv. Funct. Mater.* 2012, 22, 842–848.
- Wu, X.; Wang, Z. Y.; Zhu, D.; Zong, S. F.; Yang, L. P.; Zhong, Y.; Cui, Y. P. pH and Thermo Dual-Stimuli-Responsive Drug Carrier Based on Mesoporous Silica Nanoparticles Encapsulated in a Copolymer–Lipid Bilayer. ACS Appl. Mater. Interfaces, 2013, 5(21), 10895–10903.
- 7. Wang, J.; Liu, H. Y.; Leng, F.; Zheng, L. L.; J. Yang, H.; Wang, W.; Huang, C. Z.

Autofluorescent and pH-Responsive Mesoporous Silica for Cancer-Targeted and Controlled Drug Release. *Microporous Mesoporous Mater.* **2014**, *186*, 187–193.

- Li, X. R.; Garamus, V. M.; Li, N.; Gong, Y. B.; Zhe, Z.; Tian, Z. F.; Zou, A. H. Preparation and Characterization of a pH-Responsive Mesoporous Silica Nanoparticle Dual-Modified with Biopolymers. *Colloids Surf.*, A, 2018.
- Gao, Y.; Chen, Y.; Ji, X. F.; He, X. Y.; Yin, Q.; Zhang, Z. W.; Shi, J. L.; Li, Y. P. Controlled Intracellular Release of Doxorubicin in Multidrug-Resistant Cancer Cells by Tuning the Shell-Pore Sizes of Mesoporous Silica Nanoparticles. *ACS Nano*, 2011, *5*, 9788–9798.
- Liu, J.; Li, Q. L.; Zhang, J. X.; Huang, L.; Qi, C.; Xu, L. M.; Liu, X. X.; Wang, G. B.; Wang, L.; Wang, Z. Safe and Effective Reversal of Cancer Multidrug Resistance Using Sericin-Coated Mesoporous Silica Nanoparticles for Lysosome-Targeting Delivery in Mice. *Small*, 2017, 13, 1602567 1–14.
- Zou, Z.; He, D. G.; He, X. X.; Wang, K. M.; Yang, X.; Zhou, Q. Natural Gelatin Capped Mesoporous Silica Nanoparticles for Intracellular Acid-Triggered Drug Delivery. *Langmuir*, 2013, 29, 12804–12810.
- Yao, X. X.; Tian, Z. F.; Liu, J. X.; Zhu, Y. F.; Hanagata, N. Mesoporous Silica Nanoparticles Capped with Graphene Quantum Dots for Potential Chemo–Photothermal Synergistic Cancer Therapy. *Langmuir*, 2017, *33*, 591–599.
- Su, Y. Y.; Teng, Z. G.; Yao, H.; Wang, S. J.; Tian, Y.; Zhang, Y. L.; Liu, W. F.; Tian, W.; Zheng, L. J.; Lu, N.; Ni, Q. Q.; Su, X. D.; Tang, Y. X.; Sun, J.; Liu, Y.; Wu, J.; Yang, G. F.; Lu, G. M.; Zhang, L. J. A Multifunctional PB@mSiO₂–PEG/DOX Nanoplatform for Combined Photothermal–Chemotherapy of Tumor. *ACS Appl. Mater. Interfaces* 2016, *8*, 17038–17046.
- Pourjavadi, A.; Tehrani, Z. M.; Jokar, S. Chitosan Based Supramolecular Polypseudorotaxane as a pH-Responsive Polymer and Their Hybridization with Mesoporous Silica-Coated Magnetic Graphene Oxide for Triggered Anticancer Drug Delivery. *Polymer*, 2015, 76, 52–61.
- Shao, D.; Zhang, X.; Liu, W. L.; Zhang, F.; Zheng, X.; Qiao, P.; Li, J.; Dong, W. F.; Chen, L. Janus Silver-Mesoporous Silica Nanocarriers for SERS Traceable and pH-Sensitive Drug Delivery in Cancer Therapy. *ACS Appl. Mater. Interfaces* **2016**, *8*, 4303–4308.
- Shan, C. F.; Wang, B. K.; Hu, B. B.; Liu, W. S.; Tang, Y. Smart Yolk-Shell Type Luminescent Nanocomposites Based on Rare-Earth Complex for NIR–NIR Monitor of Drug Release in Chemotherapy. *J. Photochem. Photobiol.*, *A*, **2018**, *355*, 233–241.
- Dai, L. L.; Zhang, Q. F.; Li, J. H.; Shen, X. K.; Mu, C. Y.; Cai, K. Y. Dendrimerlike Mesoporous Silica Nanoparticles as pH-Responsive Nanocontainers for Targeted Drug Delivery and Bioimaging. ACS Appl. Mater. Interfaces 2015, 7, 7357–7372.
- 18. Zhang, Y. Y.; Ang, C. Y.; Li, M. H.; Tan, S. Y.; Qu, Q. Y.; Luo, Z.; Zhao, Y. L. Polymer-Coated Hollow Mesoporous Silica Nanoparticles for Triple-Responsive Drug Delivery. ACS

Appl. Mater. Interfaces 2015, 7, 18179–18187.

- Chen, C.; Sun, W.; Wang, X. L.; Wang, Y. B.; Wang, P. pH-Responsive Nanoreservoirs Based on Hyaluronic Acid End-Capped Mesoporous Silica Nanoparticles for Targeted Drug Delivery. *Int. J. Biol. Macromol.* 2018, *111*, 1106–1115.
- Cui, J. W.; Yan, Y.; Wang, Y. J.; Caruso, F. Templated Assembly of pH-Labile Polymer-Drug Particles for Intracellular Drug Delivery. *Adv. Funct. Mater.* 2012, *22*, 4718–4723.
- Yang, Y. J.; Tao, X.; Hou, Q.; Ma, Y.; Chen, X. L.; Chen, J. F. Mesoporous Silica Nanotubes Coated with Multilayered Polyelectrolytes for pH-Controlled Drug Release. *Acta Biomaterialia*, 2010, *6*, 3092–3100.
- Zhang, P.; Wu, T.; J. L. Kong, In Situ Monitoring of Intracellular Controlled Drug Release from Mesoporous Silica Nanoparticles Coated with pH-Responsive Charge-Reversal Polymer. ACS Appl. Mater. Interfaces 2014, 6, 17446–17453.
- Yang, K.; Luo, H. Q.; Zeng, M.; Jiang, Y. Y.; Li, J. M.; Fu, X. L. Intracellular pH-Triggered, Targeted Drug Delivery to Cancer Cells by Multifunctional Envelope-Type Mesoporous Silica Nanocontainers. ACS Appl. Mater. Interfaces 2015, 7, 17399–17407.
- Li, Z. Y.; Liu, Y.; Wang, X. Q.; Liu, L. H.; Hu, J. J.; Luo, G. F.; Chen, W. H.; Rong, L. X.; Zhang, Z. One-Pot Construction of Functional Mesoporous Silica Nanoparticles for the Tumor-Acidity-Activated Synergistic Chemotherapy of Glioblastoma. ACS Appl. Mater. Interfaces 2013, 5, 7995–8001.

Materials	r ₁ value (mM ⁻¹ •s ⁻¹)	Ref
β-NaYF ₄ :Yb,Gd,Tm	0.853	1
Gd-PEI	2.1	2
Gd-DOTA	3	3
Gadolinium (Gd)-based bacteria	4.1	4
NaGdF ₄ :Yb/Tm@SiO ₂ @TiO ₂	4.53	5
Gd•(terephthalic acid)	4.55	6
Gd-DTPA (widely used in clinic MRI)	5.77	7
gemcitabine-5' -monophosphate/Gd3+-PEG	8.3	8
Gd•(1,4-BDC)	9.86	9
PPy@BSA-Gd	10.203	10
Gd-pDBI	12.33	11
${[Gd(Cmdcp)-(H_2O)_3](NO_3)\cdot 3H_2O]_n}$	13.46	12
GRGDS-NH ₂ +MTX-copolymer-modified Gd MOF nanoparticles	14.45	9
[DPP-ZnP-GdDOTA] ⁻	19.94	13
Au core-silica layer/Gd ³⁺ -Au shell	24	3
PNIPAM-co-PNAOS-co-PFMA modified Gd-MOF nanoparticles	33.43	9
MTX-copolymer-modified Gd MOF nanoparticles	38.52	9
Gd-AuNCs	41.5±2.5	14
$Gd^{3+}/Dy^{3+}/Yb^{3+}$ cosubstitutions in β - Ca ₃ (PO ₄) ₂	48.71	15
PEG-Na _x GdWO ₃	80	16
Gd•(1,2,4-BTC)	83.9	17
$[Gd_6(PT1)_4(NO_3)_6-9H]^{3+}$	388.5	18
$(Gd, Tm) \bullet (BTC) \bullet (H_2O) \bullet DMF$	225.86	This work

Table S6. List of Gd^{3+} as excellent T₁-MRI contrast agents.

Figure S9. Pie chart of reports on Gd^{3+} as T_1 -MRI contrast agents.

- Wang, X.; Chen, J. T.; Zhu, H.; Chen, X.; Yan, X. P. One-step Solvothermal Synthesis of Targetable Optomagnetic Upconversion Nanoparticles for *in Vivo* Bimodal Imaging. *Anal. Chem.* 2013, 85, 10225–10232.
- Lim, C. K.; Singh, A.; Heo, J.; Kim, D.; Lee, K. E.; Jeon, H.; Koh, J.; Kwon, I. C.; Kim, S. Gadolinium-Coordinated Elastic Nanogels for *in Vivo* Tumor Targeting and Imaging. *Biomaterials* 2013, 34, 6846-6852.
- Marangoni, V. S.; Neumann, O.; Henderson, L.; Kaffes, C. C.; Zhang, H.; Zhang, R. M.; Bishnoi, S.; Zucolotto, V.; Bankson, J. A.; Nordlander, P. Enhancing T1 Magnetic Resonance Imaging Contrast with Internalized Gadolinium (III) in a Multilayer Nanoparticle. *Proc. Nat. Acad. Sci.* 2017, *114*, 6960–6965.
- Zhang, L. L.; Liu, Y.; Zhang, Q. Y.; Li, T. G.; Yang, M.; Yao, Q. Q.; Hu, H. Y. Gadolinium-Labelled Aminoglycoside and its Potential Application as a Bacteria-Targeting Magnetic Resonance Imaging Contrast Agent. *Anal. Chem.* 2018, 1–7.
- Zhang, L. E.; Zeng, L. Y.; Pan Y. W.; Luo, S.; Ren, W. Z.; Gong, A.; Ma, X. H.; Liang, H. Z.; Lu, G. M.; Wu, A. G. Inorganic Photosensitizer Coupled Gd-Based Upconversion Luminescent Nanocomposites for in Vivo Magnetic Resonance Imaging and Near-Infrared-Responsive Photodynamic Therapy in Cancers. *Biomaterials* 2015, 44, 82–90.
- Tian, C. X.; Zhu, L. P.; Feng, L.; Boyes, S. G. Poly(acrylic acid) Bridged Gadolinium Metal-Organic Framework-Gold Nanoparticle Composites as Contrast Agents for Computed Tomography and Magnetic Resonance Bimodal Imaging. *ACS Appl. Mater. Interfaces* 2015, 7, 17765.
- Zhou, J.; Sun, Y.; Du, X. X.; Xiong, L. Q.; Hu, H.; Li, F. Y. Dual-modality *in Vivo* Imaging Using Rare-Earth Nanocrystals with Near-Infrared to Near-Infrared (NIR-to-NIR) Upconversion Luminescence and Magnetic Resonance Properties. *Biomaterials* 2010, 31,

3287-3295.

- Li, L. L.; Tong, R.; Li, M. Y.; Kohane, D. S. Self-Assembled Gemcitabine-Gadolinium Nanoparticles for Magnetic Resonance Imaging and Cancer Therapy. *Acta Biomater.* 2016, 33, 34–39.
- Rowe, M. D.; Thamm, D. H.; Kraft, S. L.; Boyes, S. G. Polymer-Modified Gadolinium Metal-Organic Framework Nanoparticles Used as Multifunctional Nanomedicines for the Targeted Imaging and Treatment of Cancer. *Biomacromolecules* 2009, *10*, 983-993.
- Yang, Z.; He, W. S.; Zheng, H. Y.; Wei, J. L.; Liu, P.; Zhu, W.; LiN, L. P.; Zhang, L.; Yi, C. F.; Xu, Z. S.; Ren, J. H. One-Pot Synthesis of Albumin-Gadolinium Stabilized Polypyrrole Nanotheranostic Agent for Magnetic Resonance Imaging Guided Photothermal Therapy. *Biomaterials* 2018.
- Meenambal, R.; Kannan, S. Cosubstitution of Lanthanides (Gd³⁺/Dy³⁺/Yb³⁺) in β-Ca₃(PO₄)₂ for Upconversion Luminescence, CT/MRI Multimodal Imaging. *ACS Biomater. Sci. Eng.* 2017, 4, 47–56.
- Kundu, T.; Mitra, S.; Díaz Díaz, D.; Banerjee, R. Gadolinium(III)-Based Porous Luminescent Metal–Organic Frameworks for Bimodal Imaging. *ChemPlusChem*, 2016, *81*, 728-732.
- Qin, L.; Sun, Z. Y.; Cheng, K.; Liu, S. W.; Pang, J. X.; Xia, L. M.; Chen, W. H.; Cheng, Z.; Chen, J. X. Zwitterionic Manganese and Gadolinium Metal-Organic Frameworks as Efficient Contrast Agents for in Vivo Magnetic Resonance Imaging. *Acs Appl Mater Interfaces*, 2017, 9, 1-9.
- Schmitt J.; Heitz V.; Sour A.; Bolze, F.; Kessler, P.; Flamigni, L.; Ventura, B.; Bonnet, C. S.; Tóth, É. A Theranostic Agent Combining a Two-Photon-Absorbing Photosensitizer for Photodynamic Therapy and a Gadolinium(III) Complex for MRI Detection. *Chem. Eur. J.* 2016, 22, 2775–2786.
- Liang, G. H.; Ye, D. X.; Zhang, X. X.; Dong, F.; Chen, H.; Zhang, S.; Li, J. Q.; Shen, X. R.; Kong, J. L. One-Pot Synthesis of Gd³⁺-Functionalized Gold Nanoclusters for Dual Model (Fluorescence/Magnetic Resonance) Imaging. *J. Mater. Chem. B* 2013, *1*, 3545–3552.
- Ni, D. L.; Zhang, J. W.; Wang, J.; Hu, P.; Jin, Y.; Tang, Z. M.; Yao, Z. W.; Bu, W. B.; Shi, J. L. Oxygen Vacancy Enables Markedly Enhanced Magnetic Resonance Imaging-Guided Photothermal Therapy of a Gd³⁺-Doped Contrast Agent. *ACS Nano* 2017, *11*, 4256-4264.
- Hatakeyama, W.; Sanchez, T. J.; Rowe, M. D.; Serkova, N. J.; Liberatore, M. W.; Boyes, S. G. Synthesis of Gadolinium Nanoscale Metal-Organic Framework with Hydrotropes: Manipulation of Particle Size and Magnetic Resonance Imaging Capability. *Acs Appl. Mater. Interfaces* 2011, *3*, 1502-1510.
- He, C.; Wu, X.; Kong, J. C.; Liu, T.; Zhang, X. L.; Duan, C. Y. A Hexanuclear Gadolinium-Organic Octahedron as a Sensitive MRI Contrast Agent for Selectively Imaging Glucosamine in Aqueous Media. *Chem. Commun.* 2012, 48, 9290-9292.