Supporting Material

# Synthesis, Structure, and Condensed-Phase Reactivity of [Ag<sub>3</sub>(μ<sub>3</sub>-H)(μ<sub>3</sub>-BH<sub>4</sub>)L<sup>Ph</sup><sub>3</sub>](BF<sub>4</sub>) (L<sup>Ph</sup> = bis(diphenylphosphino)amine) with CS<sub>2</sub>.

Howard Z. Ma,<sup>a</sup> Jonathan M. White,<sup>a</sup> Roger J. Mulder,<sup>c</sup> Gavin E. Reid,<sup>a,d</sup>

Allan J. Canty,<sup>b</sup> and Richard A. J. O'Hair<sup>a\*</sup>

(a) School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of

Melbourne, 30 Flemington Rd, Parkville, Victoria 3010, Australia. Fax: (+) 61 3 9347 8124; E-

mail: rohair@unimelb.edu.au

(b) School of Natural Sciences - Chemistry, University of Tasmania, Private Bag 75, Hobart,

Tasmania 7001, Australia.

(c) CSIRO Manufacturing, Research Way, Clayton, Victoria 3168, Australia.

(d) Department of Biochemistry and Molecular Biology, University of Melbourne, 30 Flemington

Rd, Parkville, Victoria 3010 (Australia).



**Figure S1:** Mass Spectra from the Lumos mass spectrometer for ESI-MS of a 50  $\mu$ M acetonitrile solution of: (A) the preparation of  $[Ag_3(H)(BH_4)L^{\mu_3}]^+$  from stoichiometric equivalents of AgBF<sub>4</sub>, bis(diphenylphosphino)amine L<sup>µ<sub>1</sub></sup> and NaBH<sub>4</sub>; (B) the subsequent addition of CS<sub>2</sub> to give  $[Ag_3(H)(S_2CH)L^{\mu_3}]^+$ . Spectra were recorded 15 min after the addition of NaBH<sub>4</sub> and CS<sub>2</sub> respectively. The *m/z* values shown are of the most intense isotope peak for each cluster. Insets are the Ultra-High Resolution Accurate MS: top is experimental, bottom is theoretical isotope pattern. The \* designates monoisotopic masses at 500,000 resolution:  $[Ag_3(H)(BH_4)L^{\mu_3}]^+$  (*m/z* 1491.1075 (exp)/*m/z* 1491.1116 (calc)) and  $[Ag_3(H)(S_2CH)L^{\mu_3}]^+$  (*m/z* 1554.0243 (exp)/*m/z* 1554.0193 (calc)).



**Figure S2:** Overlayed perspective of the cations **3b.BF**<sub>4</sub>, as a capped sticks model, on  $[Ag_3(\mu_3 - H)(\mu_3 - BH_4)L_3](BF_4)$  (L =  $(Ph_2P)_2CH_2 = dppm$ ), **3c.BF**<sub>4</sub>, as a wireframe model.



**Figure S3:** H bonding network between the cations **3b** and the  $BF_4^-$  counter ions.

Table S1: Crystal data and structure refinement for cluster 3bBF<sub>4</sub>.

| jmwhm1                                   |
|------------------------------------------|
| $C_{72}H_{68}Ag_{3}B_{2}F_{4}N_{3}P_{6}$ |
| 1582.34                                  |
| 130.01(10)                               |
| Monoclinic                               |
| P 21/n                                   |
| 18.3179(4)                               |
| 22.8489(4)                               |
| 21.3193(6)                               |
| 114.712(3)                               |
| 8105.9(4)                                |
| 4                                        |
| 1.455                                    |
| 7.254                                    |
| 3192                                     |
| $0.35 \times 0.05 \times 0.03$           |
| $CuK\alpha \ (\lambda = 1.54184)$        |
| 3.87 to 77.03                            |
| -11<=h<=23, -28<=k<=28, -26<=l<=26       |
| 60697                                    |
| 16930 [R(int) = 0.0793]                  |
| 16930 / 1178 / 876                       |
| 1.085                                    |
| R1 = 0.0622, wR2 = 0.1749                |
| R1 = 0.0945, wR2 = 0.1979                |
|                                          |

Table S2: Bond distances of X-ray crystallography for cluster 3b.BF<sub>4</sub>.

| C(1)-C(6)   | 1.377(12) |
|-------------|-----------|
| C(1)-C(2)   | 1.387(11) |
| C(1)-P(1)   | 1.819(8)  |
| C(2)-C(3)   | 1.378(12) |
| C(3)-C(4)   | 1.359(14) |
| C(4)-C(5)   | 1.370(15) |
| C(5)-C(6)   | 1.384(13) |
| C(7)-C(8)   | 1.3900    |
| C(7)-C(12)  | 1.3900    |
| C(7)-P(1)   | 1.825(5)  |
| C(8)-C(9)   | 1.3900    |
| C(9)-C(10)  | 1.3900    |
| C(10)-C(11) | 1.3900    |
| C(11)-C(12) | 1.3900    |
| C(13)-C(18) | 1.385(12) |
| C(13)-C(14) | 1.402(12) |
| C(13)-P(2)  | 1.816(8)  |
| C(14)-C(15) | 1.390(13) |
|             |           |

| C(15)-C(16) | 1.371(17) |
|-------------|-----------|
| C(16)-C(17) | 1.377(17) |
| C(17)-C(18) | 1.413(12) |
| C(19)-C(20) | 1.385(12) |
| C(19)-C(24) | 1.390(12) |
| C(19)-P(2)  | 1.816(8)  |
| C(20)-C(21) | 1.390(12) |
| C(21)-C(22) | 1.382(16) |
| C(22)-C(23) | 1.364(18) |
| C(23)-C(24) | 1.385(15) |
| C(25)-C(30) | 1.383(13) |
| C(25)-C(26) | 1.390(14) |
| C(25)-P(3)  | 1.828(9)  |
| C(26)-C(27) | 1.376(16) |
| C(27)-C(28) | 1.33(2)   |
| C(28)-C(29) | 1.35(2)   |
| C(29)-C(30) | 1.384(15) |
| C(31)-C(36) | 1.390(12) |
| C(31)-C(32) | 1.389(12) |
| C(31)-P(3)  | 1.817(8)  |
| C(32)-C(33) | 1.383(11) |
| C(33)-C(34) | 1.369(14) |
| C(34)-C(35) | 1.394(16) |
| C(35)-C(36) | 1.385(13) |
| C(37)-C(38) | 1.3900    |
| C(37)-C(42) | 1.3900    |
| C(37)-P(4)  | 1.808(5)  |
| C(38)-C(39) | 1.3900    |
| C(39)-C(40) | 1.3900    |
| C(40)-C(41) | 1.3900    |
| C(41)-C(42) | 1.3900    |
| C(43)-C(48) | 1.341(13) |
| C(43)-C(44) | 1.391(11) |
| C(43)-P(4)  | 1.814(7)  |
| C(44)-C(45) | 1.379(12) |
| C(45)-C(46) | 1.347(16) |
| C(46)-C(47) | 1.338(18) |
| C(47)-C(48) | 1.430(15) |
| C(49)-C(50) | 1.3900    |
| C(49)-C(54) | 1.3900    |
| C(49)-P(5)  | 1.804(5)  |
|             |           |

| C(50)-C(51)   | 1.3900    |
|---------------|-----------|
| C(51)-C(52)   | 1.3900    |
| C(52)-C(53)   | 1.3900    |
| C(53)-C(54)   | 1.3900    |
| C(55)-C(56)   | 1.3900    |
| C(55)-C(60)   | 1.3900    |
| C(55)-P(5)    | 1.863(8)  |
| C(56)-C(57)   | 1.3900    |
| C(57)-C(58)   | 1.3900    |
| C(58)-C(59)   | 1.3900    |
| C(59)-C(60)   | 1.3900    |
| C(55A)-C(56A) | 1.3900    |
| C(55A)-C(60A) | 1.3900    |
| C(55A)-P(5)   | 1.741(12) |
| C(56A)-C(57A) | 1.3900    |
| C(57A)-C(58A) | 1.3900    |
| C(58A)-C(59A) | 1.3900    |
| C(59A)-C(60A) | 1.3900    |
| C(61)-C(62)   | 1.341(15) |
| C(61)-C(66)   | 1.397(16) |
| C(61)-P(6)    | 1.835(10) |
| C(62)-C(63)   | 1.459(19) |
| C(63)-C(64)   | 1.34(2)   |
| C(64)-C(65)   | 1.360(19) |
| C(65)-C(66)   | 1.399(15) |
| C(67)-C(68)   | 1.333(13) |
| C(67)-C(72)   | 1.357(19) |
| C(67)-C(72A)  | 1.55(4)   |
| C(67)-P(6)    | 1.822(10) |
| C(68)-C(69)   | 1.386(16) |
| C(69)-C(70A)  | 1.28(5)   |
| C(69)-C(70)   | 1.36(2)   |
| C(70)-C(71)   | 1.39(2)   |
| C(71)-C(72)   | 1.38(2)   |
| C(70A)-C(71A) | 1.42(5)   |
| C(71A)-C(72A) | 1.38(4)   |
| B(1)-H(1B)    | 1.054(9)  |
| B(1)-H(1D)    | 1.053(9)  |
| B(1)-H(1A)    | 1.052(9)  |
| B(1)-H(1C)    | 1.053(9)  |
| B(2)-F(1)     | 1.255(15) |

| B(2)-F(2)   | 1.314(16)  |
|-------------|------------|
| B(2)-F(3)   | 1.343(18)  |
| B(2)-F(4)   | 1.39(3)    |
| B(2)-F(4A)  | 1.51(3)    |
| N(1)-P(1)   | 1.686(7)   |
| N(1)-P(2)   | 1.693(7)   |
| N(1)-H(1F)  | 0.82(2)    |
| N(2)-P(6)   | 1.671(7)   |
| N(2)-P(5)   | 1.686(7)   |
| N(2)-H(2A)  | 0.81(2)    |
| N(3)-P(3)   | 1.672(6)   |
| N(3)-P(4)   | 1.697(7)   |
| N(3)-H(3A)  | 0.81(2)    |
| F(3)-F(4)   | 1.73(3)    |
| P(1)-Ag(1)  | 2.4514(18) |
| P(2)-Ag(2)  | 2.4578(18) |
| P(3)-Ag(2)  | 2.4361(19) |
| P(4)-Ag(3)  | 2.4633(18) |
| P(5)-Ag(3)  | 2.4774(19) |
| P(6)-Ag(1)  | 2.445(2)   |
| Ag(1)-Ag(2) | 2.8466(7)  |
| Ag(1)-Ag(3) | 2.9214(7)  |
| Ag(1)-H(1B) | 2.14(5)    |
| Ag(1)-H(1E) | 2.08(9)    |
| Ag(2)-Ag(3) | 2.9355(7)  |
| Ag(2)-H(1E) | 2.03(9)    |
| Ag(3)-H(1E) | 1.88(9)    |





**Figure S4:** <sup>1</sup>H NMR spectra of cluster **3b.BF**<sub>4</sub> at different temperatures: (a) RT; (b) 0 °C. Deuteroacetonitrile (CD<sub>3</sub>CN) was used as the solvent for the measurement in a 400 MHz NMR spectrometer.



**Figure S5:**  ${}^{1}H{}^{31}P{}$  NMR spectra of cluster **3b.BF**<sub>4</sub>. Deuteroacetonitrile (CD<sub>3</sub>CN) was used as the solvent for the measurement in a 400 MHz NMR spectrometer.



Figure S6: Space filling model of  $[Ag_3(\mu_3-H)(\mu_3-BH_4)L^{Ph_3}](BF_4)$ .



**Figure S7:** <sup>13</sup>C {<sup>1</sup>H} NMR spectra of cluster **3b.BF**<sub>4</sub>. Deuteroacetonitrile (CD<sub>3</sub>CN) was used as the solvent for the measurement in a 400 MHz NMR spectrometer. An \* denotes a solvent impurity.



**Figure S8:**  ${}^{31}P{}^{1}H$  NMR spectra of cluster **3b.BF**<sub>4</sub>. Deuteroacetonitrile (CD<sub>3</sub>CN) was used as the solvent for the measurement in a 400 MHz NMR spectrometer.



Figure S9: <sup>11</sup>B{<sup>1</sup>H} NMR spectra of cluster **3b.BF**<sub>4</sub>. Deuteroacetonitrile (CD<sub>3</sub>CN) was used as the solvent for the measurement in a 400 MHz NMR spectrometer.



**Figure S10:** <sup>19</sup> $F{^1H}$  NMR spectra of cluster **3b.BF**<sub>4</sub>. Deuteroacetonitrile (CD<sub>3</sub>CN) was used as the solvent for the measurement in a 400 MHz NMR spectrometer.



**Figure S11:** (A) DFT calculated IR spectrum of cluster  $[Ag_3(\mu_3-H)(\mu_3-BH_4)L^{Me_3}]^+$ , **3d**, at the level of M06/6-31+G(d)/SDD. No scaling factors have been used. Simulated IR spectrum was plotted using GaussView with a resolution of 4 cm<sup>-1</sup>. Inset illustrates the core structure of **3d** with  $L^{Me}$  atoms removed for clarity; (B) ATR-FTIR spectrum of cluster **3b.BF**<sub>4</sub>. Spectrum was collected from isolated crystals and an average of 32 scans. Inset highlights the expanded region, 2500 – 2250 cm<sup>-1</sup>, of the associated B-H stretching vibrations.



Figure S12: UV/Vis absorption spectra of cluster **3b.BF**<sub>4</sub> dissolved in acetonitrile (CH<sub>3</sub>CN) at a concentration of 100  $\mu$ M.



**Figure S13:** <sup>1</sup>H NMR spectra *in situ* reaction of  $[Ag_{3}(\mu_{a}-H)(\mu_{a}-BH_{4})L^{h_{3}}](BF_{4})$  with CS<sub>2</sub> (400 MHz, CD<sub>3</sub>CN). (a) 0°C, 0 mins; (b) 25°C, 70 mins; (c) 25°C, 105 mins; (d) 25°C, 235 mins (500 MHz).



**Figure S14:** <sup>1</sup>H-<sup>13</sup>C HSQC NMR spectrum of the *in situ* reaction of  $[Ag_{3}(\mu_{a}-H)(\mu_{a}-BH_{4})L^{n}_{3}](BF_{4})$  with CS<sub>2</sub> (500 MHz, CD<sub>3</sub>CN, 25°C). The inset (×32 vertical intensity) shows the correlation between the dithioformate hydrogen (10.87 ppm) and carbon. Note that this peak is a foldback from *ca*.  $\delta_{C}$  240.7 ppm; <sup>13</sup>C spectral width collected was 224.64 to -14.68 ppm.



**Figure S15:** Positive mode ESI-MS of an aliquot taken from the in situ NMR experiments measured on a Q-Exactive Orbitrap. Labeled is the main product cluster formed  $[Ag_3(H)(S_2CH)L^{Ph_3}]^+$  at m/z 1558 (most abundant isotope shown). Insets show the isotopic pattern of this same ion; (A) experimental and (B) simulated - set at 140,000 resolution.



**Figure S16:** Single isotope multistage mass spectrometry low energy CID experiments carried out on the Lumos mass spectrometer. Mass spectra obtained using a Q value of 0.25 and an activation time of 30 ms with the given normalised collision energies (NCE) for the following species: (A) MS/MS on  $[Ag_3(H)(S_2CH)L^{Ph_3}]^+$  (NCE = 15%); (B) MS<sup>3</sup> on  $[Ag_3(H)(S_2CH)L^{Ph_2}]^+$  (NCE = 15%). A \* designates the mass selected precursor ion.

**Table S3:** Comparison of experimentally determined accurate masses of product ions versus calculated mass for the product ions observed from the fragmentation chemistry of  $[Ag_3(H)(S_2CH)L^{Ph_2}]^+$ . Monoisotopic masses at 500,000 resolution.

| Product ion                        | Experimental (m/z) | Calculated (m/z) |
|------------------------------------|--------------------|------------------|
| $[Ag_3(X)(S_2CX)L^{Ph_1}]^+$       | 783.7925           | 783.7894         |
| $[Ag_2(S_2CX)L^{Ph}_1]^+$          | 675.8790           | 675.8765         |
| $[Ag_3L^{Ph}_2]^+$                 | 1090.9481          | 1090.9446        |
| $[Ag_3, L^{Ph}_2, C, S]^+$         | 1134.9202          | 1134.9166        |
| $[Ag_2L^{Ph}_1(L^{Ph}-H)]^+$       | 983.0350           | 983.0317         |
| [AgL <sup>Ph</sup> 2] <sup>+</sup> | 877.1376           | 877.1344         |
| $[Ag_3(S)L^{Ph}_2]^+$              | 1122.9201          | 1122.9166        |
| $[Ag_3(S_2CX)L^{Ph}_2]^+$          | 1060.9949          | 1060.9914        |



**Figure S17:** LTQ multistage mass spectrometry low energy CID experiments. Mass spectra obtained using a Q value of 0.25 and an activation time of 30 ms with the given normalised collision energies (NCE) for the following species: (A) MS/MS on  $[Ag_3(D)(S_2CD)L^{Ph}_3]^+$  (NCE = 15%); (B) MS<sup>3</sup> on  $[Ag_3(D)(S_2CD)L^{Ph}_2]^+$  (NCE = 15%). A \* designates the mass selected precursor ion.



<sup>9d</sup> 10d 11d 11d Figure S18. Full structural details of key bond distances associated with the ligand transformation reaction associated with the reactions shown in Figure 6.



**Figure S19.** DFT energy surface showing competition between sequential ligand losses, versus ligand loss followed by either CH<sub>2</sub>S loss or reductive elimination of HCS<sub>2</sub>H from  $[Cu_3(H)(S_2CH)L^{Me_3}]^+$ , **4c**. Reactant, intermediates and transition states exhibit a wide range of configurations for weak interactions of organic fragments with the Cu<sub>3</sub> core. In view of the complexity of these interactions, bond orders within these fragments are not assigned. Energies (E), in kcal/mol, were calculated at the M06/def2-TZVP//M06/6-31+G(d)/SDD level of theory and are relative to **4c**.

#### Cartesian coordinates of DFT calculated structures associated with Figure 6

E(B1) = energy of optimized structure for basis set 1 (M06/6-31+G(d)) E(ZPE) = zero-point energy of optimized structure for basis set 1 (M06/6-31+G(d)) E(B2) = single point energy at basis set 2 (M06/def2-TZVP)

 $[Ag_3(\mu_3\text{-}H)(\mu_2,\mu_1\text{-}S_2CH)(L^{Me})_3]^+(4d)$ 



C13H41Ag3N3P6S2(1+) E(B1) = -3968.629350 Hartrees E(ZPE) = 0.533350 Hartrees

| Ag | 1.625884  | 0.213336   | -0.733484   |
|----|-----------|------------|-------------|
| Ag | -0.749817 | -1.52152   | 1 -0.455726 |
| Ag | -1.100980 | ) 1.330315 | -0.412485   |
| ΡŪ | 3.154693  | -1.822430  | -0.919402   |
| Р  | 0.767411  | -3.373926  | 0.209453    |
| Р  | 2.636410  | 2.545709   | -0.931362   |
| Р  | -3.228434 | -1.931251  | -0.692130   |
| Р  | -3.611572 | 1.109027   | -0.640477   |
| Р  | -0.055411 | 3.506192   | 0.164816    |
| S  | 1.841202  | 0.236814   | 2.013322    |
| S  | -1.205907 | -0.127443  | 2.068052    |
| Ν  | 2.365561  | -3.262035  | -0.399216   |
| Ν  | -4.161643 | -0.502135  | -0.885532   |
| Ν  | 1.508033  | 3.769727   | -0.490544   |
| Н  | 1.897883  | 4.705283   | -0.351070   |
| С  | -4.513803 | 1.648425   | 0.864024    |
| С  | 4.599629  | -1.736188  | 0.209653    |
| С  | 0.118049  | 3.840256   | 1.958526    |
| С  | 0.261126  | -5.039936  | -0.363002   |
| С  | -3.895478 | -3.005736  | -2.017141   |
| С  | 0.337996  | 0.027199   | 2.732068    |
| С  | 3.371786  | 3.256504   | -2.453355   |
| С  | 4.006097  | 2.809787   | 0.262380    |
| С  | -0.937588 | 5.012641   | -0.391114   |
| С  | 3.967493  | -2.375497  | -2.467685   |
| С  | 0.970253  | -3.668618  | 2.006007    |
| С  | -3.950222 | -2.726599  | 0.796239    |
| С  | -4.526594 | 2.023647   | -1.937099   |
| Н  | 0.358743  | -0.013753  | 3.828864    |
| Η  | -5.176141 | -0.629612  | -0.920052   |
| Н  | 2.968987  | -4.071189  | -0.234510   |
| Н  | -0.134339 | 0.007226   | -1.531471   |
| Н  | 5.274570  | -0.934451  | -0.118657   |
| Н  | 4.259898  | -1.506677  | 1.227918    |
| Н  | 5.163809  | -2.679940  | 0.219638    |
| Н  | 4.543716  | -3.297594  | -2.307403   |
| Н  | 3.212825  | -2.554836  | -3.241232   |
| Н  | 4.651289  | -1.594121  | -2.823710   |
| Н  | 0.981088  | -5.814115  | -0.061400   |
| Н  | -0.714112 | -5.284369  | 0.080522    |
| Н  | 0.159959  | -5.049108  | -1.454166   |
| Н  | 1.446819  | -2.792970  | 2.464778    |
| Н  | -0.016259 | -3.806163  | 2.470213    |
| Н  | 1.584941  | -4.559064  | 2.198853    |
| Н  | -3.498830 | -3.719717  | 0.932589    |
| Н  | -3.719695 | -2.124286  | 1.684443    |
| Н  | -5.039857 | -2.844454  | 0.710068    |
| Н  | -3.466487 | -4.011512  | -1.914302   |
| Η  | -4.990005 | -3.087283  | -1.956377   |
| Η  | -3.617833 | -2.608376  | -2.999404   |
| Η  | -4.153011 | 1.745709   | -2.928585   |
| Н  | -5.605696 | 1.820264   | -1.888142   |

| Η | -4.369979 | 3.101405 | -1.795385 |
|---|-----------|----------|-----------|
| Η | -4.304016 | 2.710631 | 1.053875  |
| Η | -5.600269 | 1.518301 | 0.756974  |
| Η | -4.165134 | 1.074174 | 1.731932  |
| Η | 0.542760  | 4.837366 | 2.141290  |
| Η | -0.867205 | 3.775076 | 2.440925  |
| Η | 0.768706  | 3.078803 | 2.408596  |
| Η | -1.071424 | 4.990690 | -1.478507 |
| Η | -1.928041 | 5.042266 | 0.083256  |
| Η | -0.395365 | 5.927765 | -0.112843 |
| Η | 4.344074  | 3.856057 | 0.268556  |
| Η | 3.673463  | 2.530951 | 1.270474  |
| Η | 4.858385  | 2.171318 | -0.006693 |
| Η | 4.229232  | 2.646873 | -2.766219 |
| Η | 2.632217  | 3.256844 | -3.261316 |
| Η | 3.719780  | 4.285464 | -2.284510 |
|   |           |          |           |

#### $[Ag_3(\mu_2\text{-}H)(\mu_2,\mu_1\text{-}S_2CH)(L^{Me})_2]^+(5d)$



C9H28Ag3N2P4S2(1+) E(B1) = -3071.237009 Hartrees E(ZPE) = 0.365242 Hartrees E(B2) = -3071.72793 Hartrees

| Ag | 2.156926  | 0.387158  | 0.117955  |
|----|-----------|-----------|-----------|
| Ag | -0.098742 | -1.43107  | 0.712408  |
| Ag | -0.680404 | 1.31122   | 0.109367  |
| Р  | 3.332035  | -1.801328 | -0.069285 |
| Р  | 0.870453  | -3.586628 | -0.212097 |
| Р  | 2.415210  | 2.632304  | -1.015234 |
| Р  | -0.127997 | 3.686608  | 0.291894  |
| S  | 1.888983  | 1.261167  | 2.548285  |
| S  | 0.500621  | -1.415775 | 3.195653  |

| Ν | 2.511218  | -3.212432 | -0.588039 |
|---|-----------|-----------|-----------|
| Ν | 1.487393  | 3.861854  | -0.246281 |
| Η | 1.842841  | 4.817155  | -0.326553 |
| С | 4.107226  | -2.230095 | 1.531716  |
| С | -0.130999 | 4.480243  | 1.932536  |
| С | 0.337224  | -4.476769 | -1.718067 |
| С | 1.288053  | 0.024722  | 3.528902  |
| С | 2.163925  | 2.919209  | -2.807573 |
| С | 4.103867  | 3.283003  | -0.750372 |
| С | -1.071450 | 4.874644  | -0.728902 |
| С | 4.773701  | -1.802980 | -1.195248 |
| С | 1.010050  | -4.959323 | 0.994458  |
| Η | 1.443224  | 0.204335  | 4.600096  |
| Н | 3.114354  | -4.007254 | -0.816039 |
| Н | -1.068135 | -0.336599 | -0.409056 |
| Н | 4.749154  | -1.402817 | 1.864225  |
| Η | 3.324078  | -2.373081 | 2.287622  |
| Η | 4.710285  | -3.145178 | 1.451321  |
| Η | 5.325697  | -2.751863 | -1.135459 |
| Н | 4.448201  | -1.639991 | -2.228482 |
| Η | 5.455066  | -0.991981 | -0.907820 |
| Η | 1.023222  | -5.303509 | -1.950025 |
| Η | -0.667127 | -4.890956 | -1.565237 |
| Η | 0.303700  | -3.786676 | -2.567702 |
| Η | 1.449203  | -4.586957 | 1.928571  |
| Η | 0.013284  | -5.358119 | 1.222791  |
| Η | 1.630985  | -5.777836 | 0.604060  |
| Η | 0.271337  | 5.500594  | 1.868335  |
| Η | -1.156393 | 4.529671  | 2.319595  |
| Η | 0.480878  | 3.890458  | 2.625359  |
| Η | -1.049885 | 4.566889  | -1.781071 |
| Η | -2.117430 | 4.903395  | -0.398789 |
| Η | -0.651196 | 5.886129  | -0.640878 |
| Η | 4.201615  | 4.314257  | -1.118581 |
| Η | 4.345917  | 3.254937  | 0.319115  |
| Η | 4.825004  | 2.655834  | -1.289471 |
| Η | 2.826828  | 2.267812  | -3.391798 |
| Η | 1.127456  | 2.676939  | -3.075677 |
| Η | 2.368757  | 3.966201  | -3.069953 |

## $[Ag_3(\mu_3-H)(\mu_1,\mu_1-S_2CH)(L^{Me})_2]^+$ (5d')



C9H28Ag3N2P4S2(1+) E(B1) = -3071.232516 Hartrees

#### E(ZPE) = 0.364511 Hartrees E(B2) = -3071.723029 Hartrees

| Ag | 2.695095  | 0.346016  | 0.226101  |
|----|-----------|-----------|-----------|
| Ag | 1.136925  | -1.207605 | 2.199082  |
| Ag | 0.140234  | 1.339957  | 1.421824  |
| P  | 3.401525  | -1.813094 | -0.845578 |
| Р  | 1.245670  | -3.230556 | 0.751002  |
| Р  | 3.091534  | 2.668567  | -0.701786 |
| Р  | 0.256758  | 3.453014  | 0.110418  |
| S  | -0.726646 | -1.660929 | 3.877851  |
| S  | -2.102530 | 0.382759  | 2.000219  |
| N  | 2.228854  | -3.047035 | -0.652811 |
| N  | 1.650786  | 3.581759  | -0.891834 |
| Η  | 1.757455  | 4.469069  | -1.390341 |
| С  | 4.964942  | -2.523936 | -0.203644 |
| С  | 0.293922  | 4.975360  | 1.129456  |
| С  | -0.417542 | -3.555163 | 0.069564  |
| С  | -1.992078 | -0.785711 | 3.220055  |
| С  | 3.878985  | 2.917592  | -2.333520 |
| С  | 4.159389  | 3.685981  | 0.387694  |
| С  | -1.095175 | 3.829922  | -1.057979 |
| С  | 3.679394  | -1.861818 | -2.652205 |
| С  | 1.718653  | -4.872926 | 1.403735  |
| Η  | -2.968190 | -1.010551 | 3.667382  |
| Η  | 2.318759  | -3.858747 | -1.267644 |
| Η  | 1.863792  | 0.547802  | 1.973078  |
| Η  | 5.804431  | -1.846810 | -0.409209 |
| Η  | 4.888686  | -2.652809 | 0.883784  |
| Η  | 5.173622  | -3.499043 | -0.665067 |
| Н  | 3.974431  | -2.866163 | -2.987173 |
| Н  | 2.770639  | -1.558008 | -3.183631 |
| Η  | 4.485694  | -1.163654 | -2.910544 |
| Η  | -0.414025 | -4.393907 | -0.639992 |
| Η  | -1.098547 | -3.789830 | 0.898829  |
| Η  | -0.790344 | -2.653562 | -0.431276 |
| Η  | 2.759808  | -4.860959 | 1.747244  |
| Η  | 1.076391  | -5.115886 | 2.260382  |
| Η  | 1.597350  | -5.657035 | 0.643267  |
| Η  | 0.355298  | 5.874084  | 0.499827  |
| Н  | -0.619767 | 5.034758  | 1.734818  |
| Н  | 1.153198  | 4.953294  | 1.810427  |
| Η  | -1.178251 | 3.037430  | -1.809297 |
| Η  | -2.041763 | 3.884206  | -0.505273 |
| Η  | -0.928556 | 4.791801  | -1.562869 |
| Н  | 4.248032  | 4.713997  | 0.009672  |
| Η  | 3.729720  | 3.709760  | 1.397464  |
| Η  | 5.163056  | 3.246136  | 0.456723  |
| Η  | 4.886202  | 2.482333  | -2.318364 |
| Η  | 3.294518  | 2.421848  | -3.116609 |
| Η  | 3.972392  | 3.985410  | -2.577080 |

## $[Ag_3(\mu_2-H)(\mu_1,\mu_1-S_2CH)(L^{Me})]^+$ (6d)



C5H15Ag3NP2S2(1+) E(B1) = -2173.845438 Hartrees E(ZPE) = 0.196414 Hartrees E(B2) = -2174.18814 Hartrees

| Ag | 1.444670  | -0.588321 | -1.372034 |
|----|-----------|-----------|-----------|
| Ag | 0.789391  | -1.322538 | 1.580078  |
| Ag | -0.921685 | 0.396831  | -0.181499 |
| P  | 3.328956  | -2.117038 | -1.166591 |
| Р  | 1.358379  | -3.517435 | 0.677710  |
| S  | 0.445652  | 0.436057  | 3.225576  |
| S  | -2.279592 | 0.776181  | 1.796042  |
| N  | 2.763928  | -3.484037 | -0.304740 |
| С  | 4.823428  | -1.558432 | -0.285171 |
| С  | 0.069857  | -4.342595 | -0.315355 |
| С  | -1.157270 | 0.916896  | 3.036083  |
| С  | 3.989565  | -2.838526 | -2.703588 |
| С  | 1.785885  | -4.773497 | 1.925811  |
| Η  | -1.551007 | 1.433411  | 3.920283  |
| Η  | 3.291996  | -4.353442 | -0.396286 |
| Η  | 0.001756  | 0.389517  | -1.708501 |
| Η  | 5.292840  | -0.730622 | -0.831768 |
| Η  | 4.553280  | -1.201917 | 0.716079  |
| Η  | 5.547695  | -2.378477 | -0.191828 |
| Η  | 4.743183  | -3.606400 | -2.480751 |
| Η  | 3.182578  | -3.283613 | -3.295598 |
| Η  | 4.467699  | -2.052271 | -3.300331 |
| Η  | 0.423245  | -5.316946 | -0.678132 |
| Η  | -0.827802 | -4.494597 | 0.298178  |
| Η  | -0.204257 | -3.717419 | -1.174099 |
| Η  | 2.620802  | -4.429637 | 2.545690  |
| Η  | 0.919812  | -4.948838 | 2.575355  |
| Η  | 2.053431  | -5.724922 | 1.445417  |

 $[Ag_3(\mu_2,\mu_2-S_2CH_2)(L^{Me})_2]^+(7d)$ 



C9H28Ag3N2P4S2(1+) E(B1) = -3071.267230 Hartrees E(ZPE) = 0.370947 Hartrees E(B2) = -3071.756824 Hartrees

| Ag | 2.807739  | 0.343633  | 0.980390  |
|----|-----------|-----------|-----------|
| Ag | 0.380341  | -1.454993 | 1.588149  |
| Ag | 0.277913  | 1.582047  | 2.121392  |
| P  | 3.683645  | -1.874609 | 0.248658  |
| Р  | 0.845650  | -2.639144 | -0.474487 |
| Р  | 2.563306  | 2.344441  | -0.606638 |
| Р  | -0.337524 | 2.883270  | 0.173647  |
| S  | 2.574071  | 1.261391  | 3.321010  |
| S  | 0.005587  | -0.418640 | 3.721979  |
| Ν  | 2.537497  | -2.832962 | -0.609390 |
| Ν  | 0.946870  | 2.831928  | -0.972903 |
| Н  | 0.861744  | 3.492265  | -1.750201 |
| С  | 4.316622  | -2.978656 | 1.561469  |
| С  | -0.640976 | 4.671479  | 0.414483  |
| С  | 0.318676  | -1.874802 | -2.048081 |
| С  | 1.744945  | -0.086056 | 4.253080  |
| С  | 3.276169  | 2.335389  | -2.293538 |
| С  | 3.354599  | 3.830631  | 0.120052  |
| С  | -1.778138 | 2.387765  | -0.834741 |
| С  | 5.080170  | -1.828262 | -0.930406 |
| С  | 0.223950  | -4.347067 | -0.623826 |
| Η  | 2.333894  | -1.009128 | 4.215699  |
| Н  | 2.884286  | -3.614425 | -1.167918 |
| Η  | 1.680854  | 0.231893  | 5.300790  |
| Η  | 5.109325  | -2.465970 | 2.122237  |
| Н  | 3.502626  | -3.210170 | 2.260182  |
| Н  | 4.715721  | -3.915078 | 1.148214  |
| Н  | 5.388915  | -2.838943 | -1.232625 |
| Н  | 4.798585  | -1.253072 | -1.820626 |
| Н  | 5.937778  | -1.336586 | -0.454341 |
| Н  | 0.646032  | -2.477141 | -2.906201 |
| Н  | -0.774556 | -1.779404 | -2.073690 |
| Н  | 0.758280  | -0.871732 | -2.123963 |
| Η  | 0.539634  | -4.941976 | 0.240154  |

| Η | -0.872244 | -4.336051 | -0.655274 |
|---|-----------|-----------|-----------|
| Η | 0.591278  | -4.818178 | -1.546307 |
| Η | -0.813208 | 5.175470  | -0.547187 |
| Η | -1.524804 | 4.817287  | 1.048168  |
| Η | 0.218734  | 5.132269  | 0.915488  |
| Η | -1.686682 | 1.329671  | -1.106193 |
| Η | -2.697696 | 2.517608  | -0.250539 |
| Η | -1.851646 | 2.991333  | -1.750176 |
| Η | 3.203614  | 4.716681  | -0.512643 |
| Η | 2.933185  | 4.019126  | 1.116508  |
| Η | 4.432240  | 3.657714  | 0.243072  |
| Η | 4.353669  | 2.139633  | -2.223510 |
| Н | 2.817201  | 1.542971  | -2.896292 |
| Η | 3.137646  | 3.300964  | -2.800935 |

## $[Ag_3(\mu_3\text{-}S)(K_2\text{-}SCH_2)(L^{Me})_2]^+(8d)$



C9H28Ag3N2P4S2(1+) E(B1) = -3071.238282 Hartrees E(ZPE) = 0.369038 Hartrees E(B2) = -3071.729557 Hartrees

| Ag | 2.016099  | 0.434954  | 1.750827  |
|----|-----------|-----------|-----------|
| Ag | 0.001643  | -1.615365 | 0.967006  |
| Ag | -0.726728 | 1.556185  | 1.580006  |
| Р  | 3.372156  | -1.572205 | 0.467795  |
| Р  | 0.972771  | -2.932878 | -0.807356 |
| Р  | 2.184930  | 2.209886  | -0.139935 |
| Р  | -0.534281 | 3.536291  | 0.217888  |
| S  | 4.237289  | 0.908609  | 3.116567  |
| S  | -0.184636 | -0.309902 | 2.942101  |
| Ν  | 2.628888  | -2.498302 | -0.806547 |
| Ν  | 1.115388  | 3.563488  | -0.245027 |
| Η  | 1.398188  | 4.313034  | -0.881118 |
| С  | 3.857123  | -2.831259 | 1.715931  |
| С  | -0.788145 | 5.180965  | 0.964256  |
| С  | 0.487273  | -2.779170 | -2.560781 |
| С  | 2.965912  | 0.329143  | 4.005338  |
| С  | 2.008830  | 1.401067  | -1.782849 |
| С  | 3.801705  | 3.046797  | -0.307182 |
| С  | -1.460424 | 3.674328  | -1.353192 |
|    |           |           |           |

| С | 4.999639  | -1.245911 | -0.315242 |
|---|-----------|-----------|-----------|
| С | 0.969527  | -4.744874 | -0.561032 |
| Η | 2.836956  | -0.736559 | 4.219628  |
| Η | 3.251124  | -3.122264 | -1.327167 |
| Η | 2.286993  | 0.995592  | 4.544790  |
| Η | 4.542307  | -2.374517 | 2.443739  |
| Η | 2.968971  | -3.182339 | 2.259190  |
| Η | 4.359081  | -3.689184 | 1.246767  |
| Η | 5.515616  | -2.179473 | -0.582848 |
| Η | 4.882988  | -0.636697 | -1.219860 |
| Η | 5.629512  | -0.699908 | 0.399026  |
| Η | 1.153592  | -3.375153 | -3.199488 |
| Η | -0.540900 | -3.137503 | -2.695152 |
| Η | 0.538243  | -1.730441 | -2.873739 |
| Η | 1.358571  | -4.983397 | 0.436080  |
| Η | -0.053460 | -5.134369 | -0.634018 |
| Η | 1.588950  | -5.244904 | -1.318748 |
| Η | -0.468793 | 5.973540  | 0.273571  |
| Η | -1.851135 | 5.323403  | 1.194501  |
| Η | -0.214110 | 5.261119  | 1.893485  |
| Η | -1.296937 | 2.778272  | -1.963525 |
| Η | -2.534757 | 3.760555  | -1.147630 |
| Η | -1.140757 | 4.559710  | -1.920038 |
| Η | 3.851958  | 3.671835  | -1.210095 |
| Η | 3.993764  | 3.664474  | 0.577433  |
| Η | 4.589551  | 2.283958  | -0.367067 |
| Η | 2.714116  | 0.563076  | -1.876255 |
| Η | 0.991441  | 0.993946  | -1.869015 |
| Η | 2.181484  | 2.109163  | -2.605431 |

 $[Ag_3(\mu_3-S)(L^{Me})_2]^+(9d)$ 



C8H26Ag3N2P4S(1+) E(B1) = -2633.850227 Hartrees E(ZPE) = 0.342004 Hartrees E(B2) = -2634.298311 Hartrees

| Ag | -0.000192 | 0.722948  | -0.699838 |
|----|-----------|-----------|-----------|
| Ag | -1.700812 | -1.657287 | -0.805294 |
| Ag | 1.695528  | -1.660239 | -0.813873 |

| Р | -2.229142 | 1.668801  | 0.121634  |
|---|-----------|-----------|-----------|
| Р | -3.440905 | -1.080656 | 0.762889  |
| Р | 2.228540  | 1.661567  | 0.129317  |
| Р | 3.440839  | -1.091763 | 0.751021  |
| S | -0.006163 | -1.253194 | -2.411442 |
| Ν | -3.228777 | 0.600261  | 1.044845  |
| Ν | 3.227611  | 0.586798  | 1.045886  |
| Η | 3.986292  | 1.039723  | 1.561682  |
| С | -3.300010 | 2.220913  | -1.259550 |
| С | 5.167675  | -1.231572 | 0.166463  |
| С | -3.535716 | -1.769470 | 2.450787  |
| С | 2.251387  | 3.118674  | 1.238345  |
| С | -2.253317 | 3.133474  | 1.220608  |
| С | -5.169640 | -1.226390 | 0.185463  |
| С | 3.300453  | 2.223553  | -1.247101 |
| С | 3.542136  | -1.792045 | 2.433783  |
| Η | 2.577739  | -1.683940 | 2.941150  |
| Η | 3.792639  | -2.858539 | 2.377396  |
| Η | 4.317182  | -1.279541 | 3.020247  |
| Η | 4.277411  | 2.567529  | -0.880053 |
| Η | 3.446521  | 1.397453  | -1.955597 |
| Η | 2.813137  | 3.044508  | -1.789930 |
| Η | -3.279447 | 3.450522  | 1.456144  |
| Η | -1.720354 | 2.914253  | 2.152782  |
| Η | -1.747762 | 3.966818  | 0.716458  |
| Η | -2.812528 | 3.038384  | -1.807458 |
| Η | -3.444975 | 1.389947  | -1.962577 |
| Η | -4.277460 | 2.566872  | -0.895711 |
| Η | -3.987104 | 1.056563  | 1.558141  |
| Η | 5.866899  | -0.783177 | 0.886069  |
| Η | 5.432141  | -2.288242 | 0.034394  |
| Η | 5.273319  | -0.727581 | -0.801741 |
| Η | -4.309236 | -1.253659 | 3.036352  |
| Η | -3.785391 | -2.836568 | 2.402626  |
| Η | -2.569690 | -1.656943 | 2.954070  |
| Η | 1.746687  | 3.955451  | 0.739020  |
| Η | 1.716928  | 2.893065  | 2.168124  |
| Η | 3.277191  | 3.433991  | 1.477628  |
| Η | -5.279160 | -0.730579 | -0.786503 |
| Η | -5.433835 | -2.284318 | 0.063284  |
| Η | -5.866618 | -0.772509 | 0.903816  |

 $[Ag_3(\mu_2,\mu_1-HS_2CH)(L^{Me})_2]^+$  (10d)



C9H28Ag3N2P4S2(1+) E(B1) = -3071.195625 Hartrees E(ZPE) = 0.366253 Hartrees E(B2) = -3071.690743 Hartrees

| Ag | 1.940997  | 0.270621  | -0.464981  |
|----|-----------|-----------|------------|
| Ag | -0.094573 | -1.15667  | 8 0.867521 |
| Ag | -0.125781 | 1.558105  | 0.870156   |
| Р  | 3.238747  | -1.785757 | -1.090109  |
| Р  | 1.025383  | -3.394166 | 0.283502   |
| Р  | 2.689636  | 2.659958  | -0.972874  |
| Р  | 0.149951  | 3.994707  | 0.146963   |
| S  | -0.350665 | -0.629425 | 4.428669   |
| S  | -1.985116 | -2.251903 | 2.421252   |
| Ν  | 2.372899  | -3.232331 | -0.781876  |
| Ν  | 1.490098  | 3.898895  | -0.934341  |
| Η  | 1.794471  | 4.793809  | -1.327370  |
| С  | 4.789583  | -1.984373 | -0.127473  |
| С  | 0.629168  | 5.348066  | 1.292475   |
| С  | 0.222169  | -4.893542 | -0.393824  |
| С  | -1.603669 | -1.688926 | 3.920386   |
| С  | 3.532883  | 3.098736  | -2.538736  |
| С  | 3.938662  | 3.194589  | 0.264379   |
| С  | -1.089801 | 4.842669  | -0.899159  |
| С  | 3.838416  | -2.075756 | -2.795600  |
| С  | 1.756619  | -4.061773 | 1.832462   |
| Η  | -2.219721 | -2.003674 | 4.770286   |
| Η  | 2.874636  | -4.097035 | -1.000449  |
| Η  | 0.093428  | -0.316153 | 3.160053   |
| Η  | 5.485228  | -1.166130 | -0.356841  |
| Η  | 4.562221  | -1.952608 | 0.945513   |
| Η  | 5.281516  | -2.939675 | -0.358722  |
| Η  | 4.350377  | -3.045238 | -2.876922  |
| Η  | 2.998371  | -2.057024 | -3.498091  |
| Η  | 4.546676  | -1.285182 | -3.074447  |
| Η  | 0.928053  | -5.733390 | -0.466020  |
| Η  | -0.597458 | -5.187136 | 0.275062   |
| Н  | -0.196187 | -4.687388 | -1.384787  |
| Н  | 2.354979  | -3.281231 | 2.321372   |
| Н  | 0.951194  | -4.352444 | 2.521483   |

| 4.937594 | 1.642896                                                                                                                                     |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------|
| 5 2/0805 |                                                                                                                                              |
| 0.249005 | 0.736645                                                                                                                                     |
| 5.602586 | 1.945528                                                                                                                                     |
| 5.028844 | 1.924347                                                                                                                                     |
| 4.182299 | -1.715436                                                                                                                                    |
| 5.095949 | -0.297836                                                                                                                                    |
| 5.769748 | -1.324059                                                                                                                                    |
| 1.248958 | 0.121806                                                                                                                                     |
| 3.064481 | 1.275256                                                                                                                                     |
| 2.575035 | 0.181980                                                                                                                                     |
| 2.471219 | -2.653858                                                                                                                                    |
| 2.918956 | -3.390953                                                                                                                                    |
| 1.152014 | -2.543656                                                                                                                                    |
|          | 5.249805<br>5.602586<br>5.028844<br>4.182299<br>5.095949<br>5.769748<br>4.248958<br>3.064481<br>2.575035<br>2.471219<br>2.918956<br>4.152014 |

## $[Ag_3(L^{Me})_2]^+(11d)$



C8H26Ag3N2P4(1+) E(B1) = -2235.633205 Hartrees E(ZPE) = 0.339586 Hartrees E(B2) = -2236.052144 Hartrees

| Ag | 2.054921  | 0.400087  | -0.594946 |
|----|-----------|-----------|-----------|
| Ag | 0.302311  | -1.105366 | 0.988527  |
| Ag | -0.023447 | 1.559506  | 0.886094  |
| Р  | 3.248119  | -1.780702 | -0.958732 |
| Р  | 1.076892  | -3.473549 | 0.435699  |
| Р  | 2.690298  | 2.767822  | -1.133484 |
| Р  | 0.168871  | 3.997248  | 0.151229  |
| Ν  | 2.329437  | -3.217465 | -0.723721 |
| Ν  | 1.454993  | 3.958182  | -0.999366 |
| Η  | 1.707182  | 4.867766  | -1.395122 |
| С  | 4.644351  | -1.920299 | 0.225275  |
| С  | 0.674889  | 5.334761  | 1.301837  |
| С  | 0.013927  | -4.669318 | -0.452714 |
| С  | 3.399839  | 3.237495  | -2.753118 |
| С  | 4.000975  | 3.327475  | 0.023518  |
| С  | -1.141547 | 4.834007  | -0.814157 |
| С  | 4.069716  | -2.188137 | -2.542157 |

| <ul> <li>-4.069229</li> <li>-1.139155</li> <li>-1.778369</li> <li>-2.903721</li> <li>-3.155761</li> <li>-2.223360</li> </ul> | -1.050374<br>0.022877<br>1.248656<br>0.153432<br>-2 483419                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 40 -1.139155<br>57 -1.778369<br>55 -2.903721<br>27 -3.155761<br>33 -2.223360                                                 | 0.022877<br>1.248656<br>0.153432<br>-2 483419                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 67 -1.778369<br>95 -2.903721<br>27 -3.155761<br>33 -2.223360                                                                 | 1.248656<br>0.153432<br>-2 483419                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 95       -2.903721         27       -3.155761         33       -2.223360                                                     | 0.153432                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 27 -3.155761                                                                                                                 | -2 483419                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 33 _2 223360                                                                                                                 | 2.105117                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| JJ = 2.22JJ00                                                                                                                | -3.353638                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 19 -1.413331                                                                                                                 | -2.773943                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 06 -5.524071                                                                                                                 | -0.818611                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 69 -5.044910                                                                                                                 | 0.224941                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 02 -4.177889                                                                                                                 | -1.302357                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| -4.005412                                                                                                                    | 2.227653                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| <b>. . . . . . . . . .</b>                                                                                                   | 2.405628                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 05 -5.438002                                                                                                                 | 1.203731                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 6.259927                                                                                                                     | 0.756241                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| .94 5.544403                                                                                                                 | 2.011691                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 97 5.023502                                                                                                                  | 1.873732                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 4.181110                                                                                                                     | -1.625269                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 5.055611                                                                                                                     | -0.162701                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 96 5.778258                                                                                                                  | -1.241632                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 06 4.389477                                                                                                                  | -0.129275                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 3.182156                                                                                                                     | 1.057179                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 32 2.732667                                                                                                                  | -0.121761                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 23 2.637916                                                                                                                  | -2.944145                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 24 3.045495                                                                                                                  | -3.552319                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 96 4.299971                                                                                                                  | -2.771247                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                              | 33       -2.223360         19       -1.413331         16       -5.524071         169       -5.044910         102       -4.177889         71       -4.005412         38       -4.911717         15       -5.438002         54       6.259927         194       5.544403         105       5.023502         106       4.181110         107       5.055611         196       5.778258         106       4.389477         32       3.182156         32       2.732667         23       2.637916         24       3.045495         106       4.299971 |

## $[Ag_3(\mu_2-H)(\mu_2,\mu_1-S_2CH)(L^{Me})_2]^+(TS5d-7d)$



C9H28Ag3N2P4S2(1+) E(B1) = -3071.179028 Hartrees E(ZPE) = 0.363580 Hartrees E(B2) = -3071.66913 Hartrees

| Ag | 3.099851  | 0.402744  | 1.168753  |
|----|-----------|-----------|-----------|
| Ag | 0.683987  | -1.288191 | 2.076267  |
| Ag | 0.567148  | 1.724780  | 2.228036  |
| Р  | 3.777714  | -1.830017 | 0.228384  |
| Р  | 0.779913  | -2.288207 | -0.091902 |
| Р  | 2.744255  | 2.254984  | -0.589742 |
| Р  | -0.143708 | 2.848143  | 0.211735  |

| S | 2.580053  | 1.072509  | 3.584873  |
|---|-----------|-----------|-----------|
| S | 2.125129  | -1.963922 | 4.083271  |
| Ν | 2.412508  | -2.598045 | -0.494251 |
| Ν | 1.089980  | 2.609636  | -0.962781 |
| Η | 0.951523  | 3.118339  | -1.840671 |
| С | 4.535604  | -3.104034 | 1.292053  |
| С | -0.414306 | 4.657776  | 0.246534  |
| С | 0.107791  | -1.377992 | -1.529950 |
| С | 1.545178  | -0.333624 | 4.134295  |
| С | 3.369044  | 1.944854  | -2.283733 |
| С | 3.502875  | 3.880567  | -0.205879 |
| С | -1.635326 | 2.255102  | -0.657441 |
| С | 4.937439  | -1.784865 | -1.189586 |
| С | 0.004000  | -3.930769 | -0.249090 |
| Η | 0.962311  | -0.057713 | 5.016887  |
| Η | 2.592712  | -3.376111 | -1.131124 |
| Η | 0.146879  | -0.015639 | 3.337704  |
| Η | 5.492641  | -2.732899 | 1.681342  |
| Η | 3.876291  | -3.295331 | 2.146961  |
| Η | 4.710023  | -4.032949 | 0.732221  |
| Η | 5.105186  | -2.789597 | -1.602706 |
| Η | 4.543461  | -1.134477 | -1.979471 |
| Η | 5.905077  | -1.387887 | -0.857853 |
| Η | 0.324956  | -1.908021 | -2.467360 |
| Η | -0.980146 | -1.271897 | -1.422799 |
| Η | 0.556233  | -0.374774 | -1.567034 |
| Η | 0.396997  | -4.601943 | 0.522667  |
| Η | -1.080147 | -3.840166 | -0.110991 |
| Η | 0.193553  | -4.361815 | -1.242188 |
| Η | -0.624582 | 5.042391  | -0.761382 |
| Η | -1.267821 | 4.893451  | 0.894721  |
| Η | 0.470519  | 5.164301  | 0.649217  |
| Η | -1.578678 | 1.167974  | -0.784044 |
| Η | -2.524440 | 2.487696  | -0.058269 |
| Η | -1.738182 | 2.732423  | -1.641877 |
| Η | 3.254975  | 4.630439  | -0.970247 |
| Η | 3.150120  | 4.227961  | 0.774010  |
| Η | 4.594708  | 3.778041  | -0.148912 |
| Η | 4.455357  | 1.793914  | -2.243139 |
| Η | 2.905826  | 1.038613  | -2.693773 |
| Η | 3.167038  | 2.789562  | -2.957861 |

Imaginary Vibrational Frequency = -967.1084 cm-1

# $[Ag_3(\mu_2-S)(K_2-SCH_2)(L^{Me})_2]^+(TS7d-8d)$



C9H28Ag3N2P4S2(1+) E(B1) = -3071.231187 Hartrees E(ZPE) = 0.369893 Hartrees E(B2) = -3071.721118 Hartrees

| Ag | 1.763336  | 0.258822   | 0.636801   |
|----|-----------|------------|------------|
| Ag | -0.047633 | -2.02601   | 6 0.786829 |
| Ag | -0.786086 | 5 1.565117 | 1.251588   |
| P  | 3.271994  | -1.725665  | 0.150239   |
| Р  | 1.051780  | -3.606013  | -0.678034  |
| Р  | 2.095696  | 2.390599   | -0.715098  |
| Р  | -0.485795 | 3.718163   | 0.221344   |
| S  | 2.876071  | 1.217459   | 2.968129   |
| S  | -0.514497 | -0.436102  | 2.464453   |
| Ν  | 2.661015  | -3.024699  | -0.812100  |
| Ν  | 0.852612  | 3.577030   | -0.839819  |
| Η  | 1.097688  | 4.421811   | -1.363325  |
| С  | 3.917639  | -2.519195  | 1.671042   |
| С  | -0.016688 | 5.026740   | 1.409046   |
| С  | 0.548006  | -3.902140  | -2.406291  |
| С  | 1.866863  | 0.156841   | 3.744767   |
| С  | 2.569382  | 2.188289   | -2.472324  |
| С  | 3.533403  | 3.324687   | -0.066949  |
| С  | -1.723194 | 4.552155   | -0.827196  |
| С  | 4.821338  | -1.327505  | -0.736405  |
| С  | 1.239048  | -5.303315  | -0.024762  |
| Η  | 1.962814  | -0.924384  | 3.635578   |
| Η  | 3.352282  | -3.679383  | -1.185656  |
| Η  | 1.216067  | 0.483101   | 4.558412   |
| Η  | 4.377981  | -1.754219  | 2.312176   |
| Η  | 3.089114  | -2.976694  | 2.228460   |
| Η  | 4.662242  | -3.292759  | 1.437890   |
| Η  | 5.491468  | -2.195500  | -0.813724  |
| Η  | 4.595536  | -0.956279  | -1.742413  |
| Η  | 5.343412  | -0.538291  | -0.178079  |
| Η  | 1.271266  | -4.554634  | -2.914040  |
| Η  | -0.436446 | -4.385939  | -2.425839  |
| Н  | 0.481741  | -2.951197  | -2.945307  |
| Н  | 1.670837  | -5.264560  | 0.982605   |
| Н  | 0.258210  | -5.790394  | 0.040734   |

| Η | 1.887692  | -5.908697 | -0.673068 |
|---|-----------|-----------|-----------|
| Η | 0.293286  | 5.942616  | 0.887008  |
| Η | -0.863900 | 5.262442  | 2.065657  |
| Η | 0.810841  | 4.668233  | 2.034899  |
| Η | -2.022742 | 3.897851  | -1.652537 |
| Η | -2.610571 | 4.790008  | -0.228194 |
| Η | -1.319803 | 5.489402  | -1.235169 |
| Η | 3.754554  | 4.204980  | -0.686632 |
| Η | 3.333635  | 3.647043  | 0.962949  |
| Η | 4.418216  | 2.672746  | -0.050316 |
| Η | 3.484483  | 1.584851  | -2.535022 |
| Η | 1.771677  | 1.677341  | -3.022311 |
| Η | 2.765646  | 3.160568  | -2.946107 |

Imaginary Vibrational Frequency = -49.0669 cm-1

 $[Ag_{3}(\mu_{2}\text{-}H)(\mu_{2},\mu_{1}\text{-}S_{2}CH)(L^{Me})_{2}]^{+}(TS5d\text{'-}10d)$ 



C9H28Ag3N2P4S2(1+) E(B1) = -3071.189750 Hartrees E(ZPE) = 0.362551 Hartrees E(B2) = -3071.683373 Hartrees

| Ag | 1.868637  | 0.196969  | -0.443940 |
|----|-----------|-----------|-----------|
| Ag | 0.034217  | -1.551941 | 0.961693  |
| Ag | -0.596571 | 1.238321  | 0.610291  |
| Р  | 3.257592  | -1.893664 | -0.785772 |
| Р  | 0.915453  | -3.656353 | 0.098957  |
| Р  | 2.520891  | 2.570856  | -1.026499 |
| Р  | -0.114824 | 3.620469  | 0.174180  |
| S  | 1.499527  | 0.364356  | 3.257934  |
| S  | -1.357213 | -0.272898 | 2.653607  |
| Ν  | 2.334568  | -3.347583 | -0.821370 |
| Ν  | 1.286283  | 3.750683  | -0.811135 |
| Η  | 1.574917  | 4.710366  | -1.019783 |
| С  | 4.365840  | -2.078875 | 0.665479  |
| С  | 0.308881  | 4.540965  | 1.700958  |
| С  | -0.098140 | -4.641360 | -1.057349 |
| С  | -0.161377 | 0.667186  | 3.414850  |
| С  | 3.225712  | 3.125098  | -2.622144 |
| С  | 3.833612  | 3.077883  | 0.151877  |
| С  | -1.260725 | 4.770678  | -0.661922 |

| С | 4.402770  | -2.217240 | -2.176939 |
|---|-----------|-----------|-----------|
| С | 1.453743  | -4.919453 | 1.309656  |
| Η | -0.477211 | 1.607397  | 3.875531  |
| Η | 2.848370  | -4.179220 | -1.122367 |
| Η | 1.402278  | 0.148300  | 1.680910  |
| Η | 5.087275  | -1.250811 | 0.697807  |
| Η | 3.765018  | -2.038527 | 1.584534  |
| Η | 4.915395  | -3.030195 | 0.635901  |
| Η | 4.922955  | -3.178032 | -2.053231 |
| Η | 3.856187  | -2.222646 | -3.126229 |
| Η | 5.157133  | -1.421935 | -2.214071 |
| Η | 0.467795  | -5.505429 | -1.432405 |
| Η | -0.995815 | -5.006228 | -0.543080 |
| Η | -0.407118 | -4.019306 | -1.904124 |
| Η | 2.167252  | -4.478545 | 2.016371  |
| Η | 0.587646  | -5.279136 | 1.879263  |
| Η | 1.925019  | -5.776173 | 0.807089  |
| Η | 0.683419  | 5.548714  | 1.471268  |
| Η | -0.581037 | 4.631118  | 2.337768  |
| Η | 1.074713  | 3.989287  | 2.261446  |
| Η | -1.533533 | 4.381638  | -1.648531 |
| Η | -2.173244 | 4.876525  | -0.062641 |
| Η | -0.804447 | 5.763883  | -0.778455 |
| Η | 4.066532  | 4.147927  | 0.058171  |
| Η | 3.504702  | 2.870304  | 1.178729  |
| Η | 4.749207  | 2.500995  | -0.037445 |
| Η | 4.128661  | 2.543338  | -2.844888 |
| Η | 2.500867  | 2.968235  | -3.428148 |
| Η | 3.499712  | 4.189375  | -2.587931 |

Imaginary Vibrational Frequency = -422.8989 cm-1

#### dmpa(L)



C4P2N1H13 E(B1) = -897.3386603 Hartrees E(ZPE) = 0.166819 Hartrees E(B2) = -897.4793544 Hartrees

| Р | -1.514234 | 0.041894  | -0.566033 |
|---|-----------|-----------|-----------|
| Р | 1.514234  | 0.041894  | -0.566033 |
| Ν | -0.000000 | 0.269670  | 0.234479  |
| С | 2.158726  | -1.463744 | 0.311565  |
| С | -2.158726 | -1.463744 | 0.311565  |
| С | 2.525769  | 1.293255  | 0.351730  |
| С | -2.525769 | 1.293255  | 0.351730  |
| Η | -2.218648 | 2.304552  | 0.061210  |
|   |           |           |           |

| Η | -3.587846 | 1.170676  | 0.101551 |
|---|-----------|-----------|----------|
| Η | -2.412930 | 1.190167  | 1.441880 |
| Η | -0.000000 | 0.261371  | 1.258857 |
| Η | 3.205753  | -1.647661 | 0.034952 |
| Η | 2.101247  | -1.355542 | 1.405572 |
| Η | 1.571427  | -2.342196 | 0.015456 |
| Η | 2.218648  | 2.304552  | 0.061211 |
| Η | 2.412929  | 1.190167  | 1.441881 |
| Η | 3.587846  | 1.170676  | 0.101551 |
| Η | -3.205753 | -1.647661 | 0.034952 |
| Η | -1.571427 | -2.342196 | 0.015457 |
| Η | -2.101247 | -1.355541 | 1.405573 |

#### CH<sub>2</sub>S



SCH2 E(B1) = -437.370712 Hartrees E(ZPE) = 0.024638 Hartrees E(B2) = -437.4122528 Hartrees

| S | 0.000000  | -0.000000 | 0.586843  |
|---|-----------|-----------|-----------|
| С | 0.000000  | 0.000000  | -1.026553 |
| Η | 0.000000  | 0.924351  | -1.615083 |
| Η | -0.000000 | -0.924351 | -1.615083 |

HCS<sub>2</sub>H



CH2S2 E(B1) = -835.545198 Hartrees E(ZPE) = 0.026242 Hartrees E(B2) = -835.6168508 Hartrees

| S | -0.380438 | -0.583182 | 4.412376 |
|---|-----------|-----------|----------|
| S | -1.977954 | -2.220022 | 2.415348 |
| С | -1.623835 | -1.693311 | 3.913300 |
| Η | -2.192211 | -2.027770 | 4.789968 |
| Η | 0.108695  | -0.365796 | 3.169653 |

Cartesian coordinates of DFT calculated structures associated with reductive elimination channel shown in Figure S14. $\xi$ 

E(B1) = energy of optimized structure for basis set 1 (M06/6-31+G(d))E(ZPE) = zero-point energy of optimized structure for basis set 1 (M06/6-31+G(d))E(B2) = single point energy at basis set 2 (M06/def2-TZVP)

[Cu<sub>3</sub>(μ<sub>3</sub>-H)(μ<sub>2</sub>,μ<sub>1</sub>-S<sub>2</sub>CH)(L<sup>Me</sup>)<sub>2</sub>]<sup>+</sup> (5c')

C9H28Cu3N2P4S2(1+) E(B1) = -3222.435074 Hartrees E(ZPE) = 0.367730 Hartrees E(B2) = -7552.130735 Hartrees

| Cu | 0.001938  | 0.873387  | 0.365018   |
|----|-----------|-----------|------------|
| Cu | 1.155608  | -1.240353 | 1.177584   |
| Cu | -1.250930 | -1.20675  | 6 1.116622 |
| Р  | 2.018052  | 1.957048  | 0.235463   |
| Р  | 3.286377  | -0.764498 | 0.768557   |
| Р  | -1.980130 | 2.000843  | 0.121211   |
| Р  | -3.347355 | -0.681761 | 0.598358   |
| S  | -0.043083 | -3.019158 | 0.004786   |
| S  | 0.045717  | -0.482084 | -1.702573  |
| Ν  | 3.367191  | 0.932179  | 0.542503   |
| Ν  | -3.371318 | 1.014254  | 0.356143   |
| Η  | -4.275802 | 1.437986  | 0.137542   |
| С  | 2.367815  | 3.404601  | 1.298172   |
| С  | -4.739560 | -0.948706 | 1.748359   |
| С  | 3.990081  | -1.473206 | -0.763798  |
| С  | 0.013265  | -2.145225 | -1.447082  |
| С  | -2.237716 | 2.680008  | -1.561441  |
| С  | 2.386209  | 2.633259  | -1.427462  |
| С  | 4.612537  | -1.073266 | 1.984468   |
| С  | -2.348342 | 3.461583  | 1.159556   |
|    |           |           |            |

 $<sup>\</sup>xi$  Note all structures associated with the ligand loss channels and CH<sub>2</sub>S extrusion reaction are given in the SI associated with reference 14.

| С | -3.985519 | -1.387045 | -0.963127 |
|---|-----------|-----------|-----------|
| Η | -3.276979 | -1.165907 | -1.771292 |
| Η | -4.074898 | -2.477239 | -0.869896 |
| Η | -4.968777 | -0.970004 | -1.220521 |
| Η | -3.334453 | 3.885437  | 0.924259  |
| Η | -2.320241 | 3.183590  | 2.218875  |
| Η | -1.586520 | 4.232325  | 0.981564  |
| Η | 3.398341  | 3.058383  | -1.480019 |
| Η | 2.290506  | 1.838411  | -2.178059 |
| Η | 1.664826  | 3.424959  | -1.670917 |
| Η | 1.633133  | 4.193022  | 1.086718  |
| Η | 2.280889  | 3.123455  | 2.353430  |
| Η | 3.373612  | 3.807059  | 1.114185  |
| Η | 4.292984  | 1.332233  | 0.374279  |
| Η | 0.030383  | -2.759903 | -2.354899 |
| Η | -5.666724 | -0.514108 | 1.349950  |
| Η | -4.895707 | -2.025184 | 1.890327  |
| Η | -4.518648 | -0.495819 | 2.720694  |
| Η | 5.001382  | -1.088463 | -0.954806 |
| Η | 4.036143  | -2.566978 | -0.681703 |
| Η | 3.341814  | -1.216299 | -1.611277 |
| Η | -1.479802 | 3.447919  | -1.767122 |
| Η | -2.126284 | 1.878974  | -2.303230 |
| Η | -3.232003 | 3.135776  | -1.669725 |
| Η | 4.353211  | -0.625186 | 2.949459  |
| Η | 4.739336  | -2.154152 | 2.121821  |
| Η | 5.566817  | -0.654128 | 1.636587  |
| Η | -0.051633 | -0.182753 | 1.852195  |
|   |           |           |           |

 $[Cu_3(\mu_2,\mu_1-HS_2CH)(L^{Me})_2]^+$  (10c)



C9H28Cu3N2P4S2(1+) E(B1) = -3222.379509 Hartrees E(ZPE) = 0.368413 Hartrees E(B2) = -7552.078461 Hartrees

| Cu | 0.007469  | 0.992825  | -0.767003 |
|----|-----------|-----------|-----------|
| Cu | 1.122447  | -1.216020 | -0.670842 |
| Cu | -1.416735 | -1.179127 | -0.932187 |

| Р | 1.988605  | 2.140666  | -0.909087 |
|---|-----------|-----------|-----------|
| Р | 2.656147  | -0.344102 | 0.603055  |
| Р | -1.763272 | 2.041948  | 0.191538  |
| Р | -3.386320 | -0.461799 | -0.200662 |
| S | 0.325095  | -3.679591 | 1.088096  |
| S | -0.054379 | -2.694688 | -1.819681 |
| Ν | 2.881329  | 1.335492  | 0.325840  |
| Ν | -3.269035 | 1.218853  | 0.116688  |
| Η | -4.074548 | 1.674391  | 0.551079  |
| С | 2.204670  | 3.887017  | -0.398142 |
| С | -3.867339 | -1.213057 | 1.396830  |
| С | 4.321932  | -1.057065 | 0.381727  |
| С | 1.001240  | -3.237528 | -0.500909 |
| С | -2.269104 | 3.759956  | -0.181993 |
| С | 3.046326  | 2.049959  | -2.402428 |
| С | 2.386409  | -0.499485 | 2.398780  |
| С | -1.373660 | 2.153530  | 1.982917  |
| С | -4.923137 | -0.590089 | -1.175305 |
| Η | -4.790685 | -0.112295 | -2.151742 |
| Η | -5.166388 | -1.647830 | -1.333651 |
| Η | -5.761550 | -0.111490 | -0.650677 |
| Η | -2.184144 | 2.631476  | 2.550280  |
| Η | -1.208367 | 1.142141  | 2.377987  |
| Η | -0.449585 | 2.732040  | 2.127374  |
| Η | 4.054772  | 2.435160  | -2.197772 |
| Η | 3.118479  | 1.005462  | -2.732044 |
| Η | 2.603240  | 2.633463  | -3.219694 |
| Η | 1.746337  | 4.544197  | -1.147703 |
| Η | 1.706815  | 4.054907  | 0.564592  |
| Η | 3.264693  | 4.161794  | -0.304289 |
| Η | 3.755287  | 1.759639  | 0.643258  |
| Η | 1.835081  | -3.867649 | -0.809704 |
| Η | -4.780122 | -0.751148 | 1.797538  |
| Η | -4.044517 | -2.287598 | 1.260093  |
| Η | -3.055161 | -1.089598 | 2.124319  |
| Η | 5.064712  | -0.552134 | 1.015198  |
| Η | 4.287534  | -2.120015 | 0.654015  |
| Η | 4.628178  | -0.977976 | -0.668224 |
| Η | -1.407999 | 4.425266  | -0.036254 |
| Η | -2.599410 | 3.840616  | -1.223240 |
| Η | -3.080535 | 4.095464  | 0.479358  |
| Η | 1.447185  | -0.005269 | 2.674929  |
| Η | 2.316682  | -1.563742 | 2.662263  |
| Η | 3.212207  | -0.041138 | 2.959192  |
| Η | -0.192537 | -2.446323 | 1.369826  |

 $[Cu_3(L^{Me})_2]^+(11c)$ 



C8H26Cu3N2P4(1+) E(B1) = -2386.795804 Hartrees E(ZPE) = 0.341163 Hartrees E(B2) = -6716.415477 Hartrees

| Cu | -0.136520 | 1.070188  | -0.053111 |
|----|-----------|-----------|-----------|
| Cu | 0.913254  | -0.997553 | 0.693081  |
| Cu | -1.453330 | -0.88731  | 0.560179  |
| Р  | 1.946500  | 1.962752  | -0.181358 |
| Р  | 3.184316  | -0.725289 | 0.564348  |
| Р  | -2.106228 | 2.191555  | -0.173877 |
| Р  | -3.666373 | -0.395851 | 0.217183  |
| Ν  | 3.244393  | 0.831110  | -0.173648 |
| Ν  | -3.510554 | 1.216132  | -0.374108 |
| Η  | -4.382180 | 1.726373  | -0.537596 |
| С  | 2.253294  | 3.028982  | 1.280499  |
| С  | -4.836825 | -0.230155 | 1.619268  |
| С  | 4.298842  | -1.692528 | -0.515233 |
| С  | -2.433579 | 3.501768  | -1.407593 |
| С  | 2.461858  | 3.059312  | -1.550858 |
| С  | 4.206462  | -0.535171 | 2.074344  |
| С  | -2.381360 | 3.087701  | 1.404004  |
| С  | -4.727922 | -1.163788 | -1.058470 |
| Н  | -4.182356 | -1.234323 | -2.005506 |
| Η  | -5.011277 | -2.175318 | -0.742279 |
| Η  | -5.644019 | -0.577177 | -1.214346 |
| Η  | -3.376450 | 3.553342  | 1.430718  |
| Η  | -2.293458 | 2.383296  | 2.241510  |
| Η  | -1.619995 | 3.869343  | 1.532625  |
| Η  | 3.488800  | 3.424378  | -1.405950 |
| Η  | 2.402063  | 2.527811  | -2.506728 |
| Η  | 1.789028  | 3.925503  | -1.589206 |
| Η  | 1.586314  | 3.901607  | 1.253328  |
| Η  | 2.042071  | 2.464025  | 2.197738  |
| Η  | 3.294513  | 3.379632  | 1.308393  |
| Η  | 4.175473  | 1.230842  | -0.316486 |
| Н  | -5.749908 | 0.299950  | 1.313719  |
| Н  | -5.118363 | -1.223061 | 1.992159  |
| Η  | -4.360351 | 0.320536  | 2.439325  |

| Η | 5.276037  | -1.200406 | -0.619165 |
|---|-----------|-----------|-----------|
| Η | 4.455396  | -2.688294 | -0.082170 |
| Η | 3.849653  | -1.810386 | -1.507149 |
| Η | -1.680493 | 4.292841  | -1.298917 |
| Η | -2.366478 | 3.092783  | -2.421596 |
| Η | -3.427944 | 3.949209  | -1.265238 |
| Н | 3.703526  | 0.134702  | 2.782194  |
| Н | 4.339541  | -1.509456 | 2.561589  |
| Η | 5.198111  | -0.125331 | 1.836336  |
|   |           |           |           |

## $[Cu_3(\mu_3-H)(\mu_2,\mu_1-S_2CH)(L^{Me})_2]^+(TS5c'-10c)$



C9H28Cu3N2P4S2(1+) E(B1) = -3222.376403 Hartrees E(ZPE) = 0.364353 Hartrees E(B2) = -7552.075555 Hartrees

| Cu | -0.013559 | 0.909081  | -0.113604 |
|----|-----------|-----------|-----------|
| Cu | 1.206343  | -1.315098 | -0.194730 |
| Cu | -1.332806 | -1.25261  | -0.500624 |
| Р  | 1.910255  | 2.004903  | -0.674452 |
| Р  | 3.174549  | -0.500960 | 0.391783  |
| Р  | -1.905165 | 1.951236  | 0.633155  |
| Р  | -3.389060 | -0.409964 | -0.498477 |
| S  | 0.001924  | -2.067710 | 2.282242  |
| S  | -0.107945 | -3.148224 | -0.520238 |
| Ν  | 3.199410  | 1.193297  | 0.123910  |
| Ν  | -3.314361 | 1.247151  | -0.052963 |
| Η  | -4.203132 | 1.714621  | 0.140370  |
| С  | 2.264839  | 3.739884  | -0.203955 |
| С  | -4.489278 | -1.168045 | 0.751447  |
| С  | 4.635755  | -1.109389 | -0.522965 |
| С  | 0.674045  | -3.038885 | 1.023164  |
| С  | -2.221747 | 3.729397  | 0.337488  |
| С  | 2.371198  | 2.001473  | -2.448450 |
| С  | 3.685738  | -0.684021 | 2.132471  |
| С  | -2.148836 | 1.833310  | 2.447768  |
| С  | -4.446289 | -0.387910 | -1.985827 |
| Η  | -3.932126 | 0.122449  | -2.806990 |
|    |           |           |           |

| Η | -4.665214 | -1.417829 | -2.293322 |
|---|-----------|-----------|-----------|
| Η | -5.395810 | 0.125629  | -1.781285 |
| Η | -3.107216 | 2.277783  | 2.750553  |
| Η | -2.134273 | 0.779761  | 2.755995  |
| Η | -1.337375 | 2.353377  | 2.973870  |
| Η | 3.390625  | 2.385866  | -2.589814 |
| Η | 2.315178  | 0.975991  | -2.835647 |
| Η | 1.674964  | 2.623307  | -3.026093 |
| Η | 1.572419  | 4.404864  | -0.735659 |
| Η | 2.121497  | 3.875536  | 0.874184  |
| Η | 3.290920  | 4.032251  | -0.468787 |
| Η | 4.103297  | 1.667873  | 0.165416  |
| Η | 1.556419  | -3.644219 | 1.230503  |
| Η | -5.440031 | -0.622402 | 0.831989  |
| Η | -4.700875 | -2.208082 | 0.472627  |
| Η | -3.990365 | -1.174757 | 1.728555  |
| Η | 5.546565  | -0.578517 | -0.212654 |
| Η | 4.772411  | -2.180608 | -0.329335 |
| Η | 4.487241  | -0.969439 | -1.600291 |
| Η | -1.441149 | 4.317869  | 0.836679  |
| Η | -2.188447 | 3.944285  | -0.736454 |
| Η | -3.196876 | 4.042735  | 0.736619  |
| Η | 2.892807  | -0.314078 | 2.792303  |
| Η | 3.847060  | -1.747430 | 2.353138  |
| Η | 4.614796  | -0.132512 | 2.330298  |
| Η | -0.208277 | -0.887229 | 1.362728  |
|   |           |           |           |

Imaginary Vibrational Frequency = -519.4424 cm-1