Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2018

Supplementary Information

for

Lewis Base Complexes of Sila[2]aluminocenophanes

1.	Experimental Details	S1 – S5
2.	NMR spectra	S6 - S11
3.	XRD-data	S12 - S16
4.	Computational Details	S17 – 20
5.	References	S21

1. Experimental Details

All manipulations were carried out under an inert gas atmosphere (argon 5.0), using either Schlenk line techniques of glovebox. а 1,2dichlorotetramethyldisilane was purchased from ABCR and used as received. Dicyclopentadiene was purchased from ABCR, and cracked and distilled prior to use. Lithium aluminum hydride solution (1.0 M in diethyl ether), aluminum trichloride, aluminum tribromide and *n*-butyl-sec-butylmagnesium solution (0.7 M in hexane) were purchased from Sigma Aldrich and used as received. All other starting materials (NHC, NHC=S, HAIX₂·(THF)₂) were synthesized following literature established procedures.¹⁻²

NMR-spectra were recorded on a Bruker Avance III 300 and a Bruker Avance 400. ¹H and ¹³C NMR spectra were referenced using the solvent signals (δ ¹H (C₆HD₅) = 7.20; δ ¹³C (C₆D₆) = 128.0), ²⁷Al and ²⁹Si NMR spectra were referenced using external standards (δ ²⁷Al (AlCl₃ in D₂O) = 0) (δ ²⁹Si (SiMe₄) = 0). Single crystal X-ray diffraction analysis were carried out at low temperatures on a Bruker AXS X8 Apex CCD diffractometer operating with graphite monochromated Mo K α radiation. Structure solution and refinement were performed using SHELX.³ Crystal structures have been deposited with the Cambridge Crystallographic Data Centre (CCDC) and are available free of charge from the Cambridge Structural Database (see CCDC numbers).

Synthesis of Cp₂Mg

Magnesocene was prepared by treating 20 g (303 mmol) freshly cracked and distilled cyclopentadiene with a solution of *n*-butyl-*sec*-butylmagnesium (0.7 M in hexane, 216 mL, 151.3 mmol) at 0°C. The colorless solid was collected by filtration, washed with small portions of cold hexane and dried in vacuum.

Yield: 10.1 g / 43% ¹H NMR (300 MHz, C_6D_6): δ = 6.05 (s, 10 H); ¹³C{¹H} NMR (75 MHz, C_6D_6): δ = 107.8.

Synthesis of ansa-Me₄Si₂(C₅H₅)₂

Method A:

Magnesocene (10 g, 64.7 mmol) was suspended in 350 mL of hexane. 1,2dichloro-1,1,2,2-tetramethyldisilane (purity: 90%, 13.5 g, 64.7 mmol) was slowly added. The mixture was stirred at room temperature for 2 h. After filtration, all volatiles were removed under reduced pressure and the residue was distilled in vacuum (0.03 mbar, 67-95°C) to give the product as a colorless to light yellow oil. Yield: 10.6 g / 66%

Method B:

Freshly cracked and distilled cyclopentadiene (19.4 g, 293 mmol) was added slowly to a solution of *n*-butyllithium (2.5 M solution in hexane, 279.5 mmol, 111.8 ml) in 350 ml hexane at -70°C. The mixture warmed to room temperature and stirred for 2 h. Subsequently, 1,2-dichloro-1,1,2,2-tetramethyldisilane (25 g, 119.8 mmol) was added slowly at room temperature and the resulting mixture was stirred overnight. After filtration, all volatiles were removed under vacuum and the residue was distilled in vacuum (0.03 mbar, 67-95°C) to give the product as a colorless to light yellow oil.

Yield: 22.0 g / 67%

Purity of the ligand was checked and confirmed by GC-MS and ²⁹Si NMR spectroscopy. The compound is obtained as a mixture of six isomers, as indicated by nine signals in the ²⁹Si NMR spectrum (3 symmetrically and 3 unsemmatrically substituted isomers). It is only marginally stable at room temperature and should therefore be stored at low temperature or used directly for follow-up synthesis. ²⁹Si{¹H} NMR (60 MHz, C₆D₆): δ = -15.1,-16.1,-16.3,-27.2,-27.5,-28.1,-28.3, -28.5, -28.7.

Synthesis of sila[2]magnesocenophane 1

A solution of *ansa*-Me₄Si₂(C₅H₅)₂ (16.3 g, 66.0 mmol) in 500 ml hexane was treated with a solution of *n*-butyl-*sec*-butylmagnesium (0.7 M in hexane, 66.0 mmol, 94.2 ml). After stirring for 90 min at room temperature, the mixture was stored at -25°C overnight. A colorless precipitate formed and was isolated, washed with small portions of cold hexane and dried in vacuum.

Yield: 9.5 g / 54%

¹H NMR (300 MHz, C₆D₆): δ = 6.10 (s, 8H), 0.51 (s, 12H);

¹³C{¹H} NMR (75 MHz, C₆D₆): δ = 117.8, 114.6, 109.6, -3.6;

²⁹Si{¹H} NMR (60 MHz, C₆D₆): δ = -24.2

Crystals of **1**•DME, suitable for single crystal X-ray diffraction, were obtained by addition of ~3 eq of dimethoxyethane to a solution of sila[2]magnesocenophane, **1**, in toluene, and subsequent storing of the solution at -25°C overnight.

¹H NMR (300 MHz, C₆D₆): δ = 6.38 – 6.34 (m, 4H), 6.30 – 6.26 (m, 4H), 2.61 (s, 6H), 2.32 (s, 4H), 0.70 (s, 12H);

¹³C{¹H} NMR (75 MHz, C₆D₆): δ = 111.6, 111.0, 109.6, 68.3, 58.9, -1.8;

²⁹Si{¹H} NMR (60 MHz, C₆D₆): δ = -27.2.

Elemental analysis for $C_{18}H_{30}MgO_2Si_2$: found: C: 56.2%, H: 7.46%; calc.: C: 60.24%, H: 8.43% (elemental analysis repeatedly and reproducibly yielded low carbon content, presumably due to the formation of silicon carbide).

Synthesis of sila[2]aluminocenophane (THF) complexes 2a-b

Method A:

Dihaloalane bis(tetrahydrofuran) (0.91 g, 3.72 mmol HAlCl₂·(THF)₂ / 1.23 g, 3.72 mmol HAlBr₂·(THF)₂) and sila[2]-magnesocenophane, **1**, (1.0 g, 3.72 mmol) were charged into a flask. 40 mL of toluene were added and the mixture was stirred overnight at room temperature. After filtration, all volatiles were removed in vacuum and hexane was added. After filtration, the hexane solution was concentrated and stored at -20°C overnight, resulting in the crystallization of complexes **2a-b**. The products were obtained as colorless to light yellow crystalline solids.

Yield: **2a**: 747 mg, 1.97 mmol/ 53%; **2b**: 267 mg, 0.63 mmol / 17% Method B:

Aluminum trihalide (50 mg, 0.37 mmol AlCl₃ / 99 mg, 0.37 mmol AlBr₃) and sila[2]magnesocenophane, **1**, (100 g, 0.37 mmol) were charged into a flask. 5 mL of THF were added and the mixture was stirred at room temperature overnight. Workup was identical to that described in method A.

2a:

¹H NMR (300 MHz, C_6D_6): δ = 7.08 (dt, J = 3.3 Hz, 1.3 Hz, 2H), 6.98 (td, J = 3.4 Hz, 0.7 Hz, 2H), 6.83 – 6.79 (m, 2H), 5.92 (d, J = 2.8 Hz, 2H), 3.26 (ddd, J = 6.8 Hz, 4.4 Hz, 2.7 Hz, 4H), 0.93 – 0.86 (m, 4H), 0.66 (s, 6H), 0.21 (s, 6H);

¹³C{¹H} NMR (75 MHz, C₆D₆): δ = 133.6, 128.8, 127.3, 105.8, 96.7, 74.4, 24.5, -3.0, -3.2;

²⁹Si{¹H} NMR (60 MHz, C₆D₆) δ -23.4.

Elemental analysis for C₁₈H₂₈AlClOSi₂: found: C: 56.2%, H: 7.46%; calcd.: C: 57.0%, H: 7.45%.

2b:

¹H NMR (400 MHz, C₆D₆): δ = 7.18 – 7.03 (m, 2H), 7.06 – 6.91 (m, 2H), 6.81 (td, J = 3.1 Hz, 1.2 Hz, 2H), 5.93 (d, J = 2.5 Hz, 2H), 3.25 (s, 4H), 0.86 (s, 4H), 0.69 (s, 6H), 0.20 (s, 6H);

¹³C{¹H} NMR (101 MHz, C₆D₆): δ = 134.1, 129.1, 127.6, 106.8, 74.6, 24.5, -2.5, -3.2;

²⁹Si{¹H} NMR (79 MHz, C₆D₆): δ = -23.3.

Elemental analysis for C₁₈H₂₈AlBrOSi₂: found: C: 50.96%, H: 6.86%; calcd.: C: 51.05%, H: 6.66%.

Synthesis of sila[2]-aluminocenophane·(NHC) complex 2c and sila[2]aluminocenophane·(thione) complex 2d

The aluminium trichloride Lewis base complexes used in the synthesis of **2c-d** were generated in situ.

Aluminum trichloride (1.0 g, 7.5 mmol) and carbene (NHC) or thione (NHC=S) (1.35 g, 7.5 mmol NHC; 1.17 g, 7.5 mmol NHC=S) were suspended in 10 ml of toluene and stirred for 15-20 min until all components were completely dissolved. The solution was then used directly in the synthesis of **2c-d**.

To a suspension of sila[2]magnesocenophane, **1**, in 150 mL of toluene was added a toluene solution of the corresponding aluminium trichloride (Lewis base) complex and the mixture was stirred at room temperature overnight. All volatiles were removed under reduced pressure and hexane was added. After filtration, the filtrate was concentrated and stored at -20°C overnight. The colorless crystalline precipitate was collected, washed with small portions of cold hexane and dried in vacuum.

2c: 1,57 mg, 3,23 mmol / 43%; **2d**: 662 mg, 1,2 mmol / 17%. AlCl₃·(NHC):

¹H NMR (400 MHz, C₆D₆): δ = 5.72 (s, 2H), 1.69 (s, 6H), 1.14 (d, *J* = 7.0 Hz, 12H);

²⁷Al{¹H} NMR (104 MHz, C₆D₆): δ = 106, 104 (²⁷Al NMR indicates an equilibrium in solution between AlCl₃·NHC and [AlCl₂·(NHC)₂][AlCl₄] for this compound). AlCl₃·(NHC=S):

¹H NMR (400 MHz, C₆D₆): δ = 5.38 (s, 2H), 1.62 (s, 6H), 1.15 (d, *J* = 7.1 Hz, 12H); ²⁷Al{¹H} NMR (104 MHz, C₆D₆): δ = 110, 104 (²⁷Al NMR indicates an equilibrium in solution between AlCl₃·NHC=S and [AlCl₂·(NHC=S)₂][AlCl₄] for this compound). **2c**:

¹H NMR (400 MHz, C₆D₆): δ = 7.32 – 7.24 (m, 2H), 7.02 – 6.90 (m, 2H), 6.83 (d, J = 1.2 Hz, 2H), 6.26 (s, 2H), 4.87 (sept, J = 7.0 Hz, 2H), 1.41 (s, 6H), 1.09 (d, J = 7.0 Hz, 12H), 0.87 (s, 6H), 0.33 (s, 6H);

¹³C NMR (101 MHz, C₆D₆): δ = 164.0, 134.4, 132.2, 128.6, 126.9, 126.4, 52.0, 21.9, 10.0, -2.0;

²⁷Al NMR (104 MHz, C_6D_6): δ = 124;

²⁹Si NMR(79 MHz, C₆D₆): δ = -21.8.

Elemental analysis for $C_{25}H_{40}AlClN_2Si_2$: found: C: 58.06%, H: 8.73%; calc.: C: 61.63%, H: 8.28% (elemental analysis repeatedly and reproducibly yielded low carbon content, presumably due to the formation of silicon carbide).

2d:

¹H NMR (300 MHz, C₆D₆): δ = 7.18 – 7.12 (m, 2H), 7.01 (dt, *J* = 3.1, 1.5 Hz, 2H), 6.72 (dt, *J* = 3.1, 1.4 Hz, 2H), 5.46 (hept, *J* = 7.2 Hz, 2H), 1.34 (s, 6H), 1.07 (d, *J* = 7.1 Hz, 12H), 0.72 (s, 6H), 0.40 (s, 6H);

¹³C NMR (101 MHz, C₆D₆): δ = 146.27, 129.27, 128.60, 127.35, 125.39, 118.60, 51.18, 20.62, 9.65, -2.29, -2.34.

²⁹Si NMR (79 MHz, C₆D₆): δ = -22.17

Elemental analysis for $C_{25}H_{40}AlClN_2SSi_2$: found: C: 56.19%, H: 8.50%; calc.: C: 57.83%, H: 7.76% (elemental analysis repeatedly and reproducibly yielded low carbon content, presumably due to the formation of silicon carbide).

2. NMR spectra

 $^{29}\text{Si}\{^1\text{H}\}$ NMR (C₆D₆) spectrum of 1b

00 280 260 240 220 200 180 160 140 120 100 80 60 40 20 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 -240 -260 -280 -3C Chemical shift / ppm

30 10 -10 -30 Chemical shift / ppm 170 150 190 130 110 90 70 50 -50 -70 -90 -110 -130 -150 -170 -190

 $^{29}\text{Si}\{^1\text{H}\}$ NMR (C_6D_6) spectrum of 2d

3. XRD data

Crystal structure data of 1b.DME

CCDC code: 1849427 Empirical formula: C18H30MgO2Si2 Formula weight: 358.91 Temperature: 142(2) K 0.71073 Å Wavelength : monoclinic Crystal system: P21/n Space group: Unit cell dimensions: a = 11.3620(6) Å a= 90° b = 13.9388(7) Å b= 103.8625(19)° c = 13.4716(6) Å g = 90° 2071.39(18) Å³ Volume: Z: 4 1.151 Mg/m³ Density (calculated): Absorption coefficient: 0.208 mm⁻¹ F(000): 776 0.270 x 0.176 x 0.092 mm³ Crystal size: Theta range for data collection: 2.111 to 27.886° Index ranges: -14<=h<=14, -18<=k<=17, -17<=l<=11 20320 Reflections collected: Independent reflections: 4945 [R(int) = 0.0370] Completeness to theta = 25.242°: 100.0 % Absorption correction: semi-empirical from equivalents Max. and min. transmission: 0.7456 and 0.7264 Refinement method: full-matrix least-squares on F² Data / restraints / parameters: 4945 / 0 / 328 Goodness-of-fit on F²: 1.008 Final R indices [I>2sigma(I)]: R1 = 0.0344, wR2 = 0.0776 R indices (all data): R1 = 0.0502, wR2 = 0.0850 Extinction coefficient: n/a 0.318 and -0.216 e.Å⁻³ Largest diff. peak and hole:

Crystal structure data of 2a

CCDC code: Empirical formula: Formula weight: Temperature: Wavelength: Crystal system: Space group: Unit cell dimensions: Volume: Z: Density (calculated): Absorption coefficient: F(000): Crystal size: Theta range for data collection: Index ranges: Reflections collected: Independent reflections: Completeness to theta = 25.242°: Absorption correction: Max. and min. transmission: Refinement method: Data / restraints / parameters: Goodness-of-fit on F²: Final R indices [I>2sigma(I)]: R indices (all data): Extinction coefficient: Largest diff. peak and hole:

1849424 C18H28AICIOSi2 379.01 152(2) K 0.71073 Å triclinic P-1 a = 9.1113(2) Å a= 71.9090(10)° b = 10.3235(2) Å b= 85.5720(10)° c = 11.3696(2) Å g = 84.1350(10)° 1010.07(4) Å³ 2 1.246 Mg/m³ 0.353 mm⁻¹ 404 0.450 x 0.371 x 0.340 mm³ 1.886 to 33.260° -14<=h<=14, -15<=k<=15, -17<=l<=17 28872 7554 [R(int) = 0.0202] 100.0 % semi-empirical from equivalents 0.7465 and 0.7228 full-matrix least-squares on F² 7554 / 51 / 307 1.042 R1 = 0.0307, wR2 = 0.0883 R1 = 0.0364, wR2 = 0.0921 n/a 0.479 and -0.537 e.Å⁻³

Crystal structure data of 2b

CCDC code: Empirical formula: Formula weight: Temperature: Wavelength: Crystal system: Space group: Unit cell dimensions: Volume: Z: Density (calculated): Absorption coefficient: F(000): Crystal size: Theta range for data collection: Index ranges: **Reflections collected:** Independent reflections: Completeness to theta = 25.242°: Absorption correction: Max. and min. transmission: Refinement method: Data / restraints / parameters: Goodness-of-fit on F²: Final R indices [I>2sigma(I)]: R indices (all data):

Extinction coefficient:

Largest diff. peak and hole:

1849423 C18H28AlBrOSi2 423.47 152(2) K 0.71073 Å monoclinic P21/C a = 9.3142(4) Å a= 90° b = 16.0816(7) Å b= 95.313(2)° c = 14.3879(6) Å g = 90° 2145.86(16) Å³ 4 1.311 Mg/m³ 2.070 mm⁻¹ 880 0.241 x 0.202 x 0.054 mm³ 1.904 to 29.720° -12<=h<=8, -22<=k<=22, -19<=l<=19 22822 6007 [R(int) = 0.0504] 99.6 % semi-empirical from equivalents 0.7459 and 0.6385 full-matrix least-squares on F² 6007 / 81 / 245 1.012 R1 = 0.0453, wR2 = 0.0971 R1 = 0.0885, wR2 = 0.1099 n/a 0.555 and -0.435 e.Å⁻³

Crystal structure data of 2c

CCDC code: Empirical formula: Formula weight: Temperature: Wavelength: Crystal system: Space group: Unit cell dimensions:

Volume: Z: Density (calculated): Absorption coefficient: F(000): Crystal size: Theta range for data collection: Index ranges: Reflections collected: Independent reflections: Completeness to theta = 25.242°: Absorption correction: Max. and min. transmission: Refinement method: Data / restraints / parameters: Goodness-of-fit on F²: Final R indices [I>2sigma(I)]: R indices (all data): Extinction coefficient: Largest diff. peak and hole:

1849425 C25H40AlCIN2Si2 487.20 102(2) K 0.71073 Å monoclinic P21/C a = 9.7469(17) Å a= 90° b = 20.074(4) Å b= 97.939(6)° c = 14.418(3) Å g = 90° 2794.0(9) Å³ 4 1.158 Mg/m³ 0.269 mm⁻¹ 1048 0.587 x 0.086 x 0.039 mm³ 1.750 to 26.777° -12<=h<=12, -25<=k<=24, -18<=l<=18 23827 5967 [R(int) = 0.0821] 100.0 % semi-empirical from equivalents 0.7454 and 0.6532 full-matrix least-squares on F² 5967 / 0 / 293 1.032 R1 = 0.0585, wR2 = 0.1261 R1 = 0.1077, wR2 = 0.1451 n/a 0.559 and -0.349 e.Å-3

Crystal structure data of 2d

CCDC code: 1849426 Empirical formula: C25H40AICIN2SSi2 Formula weight: 519.26 Temperature: 102(2) K Wavelength: 0.71073 Å Crystal system: orthorhombic Space group: Pnma Unit cell dimensions: a = 11.6832(5) Å a= 90° b= 90° b = 17.3962(10) Å c = 13.8225(8) Å g = 90° Volume: 2809.3(3) Å³ Z: 4 Density (calculated): 1.228 Mg/m³ Absorption coefficient: 0.343 mm⁻¹ F(000): 1112 Crystal size: Theta range for data collection: 1.882 to 31.422° Index ranges: -14<=h<=17, -21<=k<=25, -20<=l<=20 Reflections collected: 20489 Independent reflections: 4770 [R(int) = 0.0378] Completeness to theta = 25.242°: 99.9 % Absorption correction: semi-empirical from equivalents Max. and min. transmission: 0.7462 and 0.6940 Refinement method: full-matrix least-squares on F² Data / restraints / parameters: 4770/0/231 Goodness-of-fit on F²: 1.028 Final R indices [I>2sigma(I)]: R1 = 0.0333, wR2 = 0.0770 R indices (all data): R1 = 0.0477, wR2 = 0.0840 Extinction coefficient: n/a Largest diff. peak and hole: 0.436 and -0.255 e.Å-3

4. Computational Details

All calculations were performed using the Gaussian 09, Revision D.01 package of programs.⁴ All geometry optimizations have been carried out at the B3LYP-D3/6-311+G(d,p)(C,H,Cl,O,S,Si);SDD(Br)⁵ level of theory, starting from the corresponding crystal structures. Every optimized structure was confirmed to be a minimum on the potential energy surface by a subsequent frequency analysis (all positive eigenvalues).

Optimized geometry of 2a

1	14	0	1.813297	-1.551526	0.423162
2	14	0	2.818389	0.290749	-0.678676
3	6	0	-0.070108	-1.422695	0.086739
4	6	0	2.421147	-3.234439	-0.193094
5	6	0	2.122220	-1.425088	2.285130
6	6	0	1.623384	1.720167	-0.481499
7	6	0	3 079245	-0.081975	-2 520503
8	6	Ő	4 472007	0 747322	0 118428
9	13	0	-0 617647	0 497467	0 353963
10	6	Ő	-0.482092	-1 756507	-1 292752
11	6	0 0	-0.959183	-2 248186	0.922039
12	6	Ő	0 218345	1 768900	-0.976990
13	6	Ő	1 835788	2 901402	0 203757
14	17	Ő	-0 710821	1 109777	2 409327
15	8	ñ	-2 489953	0 524418	-0.089449
16	6	ő	-1 520500	-2 654048	-1 255332
17	6	0 0	-1 819491	-2 956027	0 118188
18	6	ő	-0 274471	3 107209	-0.637517
19	6	0	0.682397	3 749979	0.103772
20	6	0	-3 013788	0.680754	-1 456334
20	6	0	-3.567845	0.0007.04	0.843386
22	6	0	-4 707132	-0 270817	-0.072254
22	1	0	3 476870	-3 38/083	0.05/2234
23	1	0	1 8//5/5	-1.040023	0.034323
24	1	0	2 207550	-9.040023	-1 276170
25	1	0	1 627524	2 240600	2 016756
20	1	0	2.105/324	1 477516	2.810730
27	1	0	1 740620	-1.477510	2.491370
20	1	0	2 526210	0.400001	2.090743
29	1	0	2 721122	0.773027	-3.024093
21	1	0	2 120114	0.345437	2.001089
27	1	0	2.130114 E 109064	-0.253015	-3.020790
32 33	1	0	J.150504	-0.002333	1 1 9 7 0 0 0
22	1	0	4.351/18	1 642067	1.16/099
34 2E	1	0	4.052352	1 265106	-0.347303
22	1	0	-0.014170	2 270020	2.107774
27	1	0	-0.920219	1 244054	1 056709
37 20	1	0	-0.012020	2 1 5 4 4 0 3 4	-1.930708
20	1	0	2.733830	2 077002	2 114422
39 40	1	0	-2.020313	-3 637206	-2.114423
40	1	0	1 252267	2 AOEEOE	0.430100
41	1	0	0.581/10	1 722528	0.565302
42	1	0	-2 623742	1 6185//	-1 8/023/
43	1	0	2.023742	0.162107	2 027492
44	6	0	-4 526287	0.102107	-1 28200/
45	1	0	2 177712	0.040334	1 460504
40	1	0	-3 70/876	1 015462	1.409394
18	1	0	-1 583360	-1 32/200	-0.268146
40 10	1	0	-4.302200	-1.324209	0.300140
50	1	0	-5 02/552	0.103/41	-2 181304
50	1	0	-3.024352	1 6/8313	-2.101390
21	Ŧ	U	-4.303083	1.040313	-1.000/39

Optimized geometry of 2b

1	35	0	0.738153	-1.607222	2.015323
2	13	0	0.582881	-0.415107	0.025704
3	8	0	2.442694	-0.291528	-0.477800
4	6	0	-0.012753	1.494333	0.247596
5	6	0	-1.661112	-1.459451	-1.020553
6	6	0	-0.273963	-1.341452	-1.552726
7	6	0	2.881494	-0.050528	-1.861015
8	6	0	3.565973	-0.092307	0.467314
9	14	0	-1.890722	1.496942	0.657306
10	6	0	0.883602	2.140350	1.222186
11	6	0	0.331323	2.155111	-1.029541
12	14	0	-2.891954	-0.061776	-0.822532
13	6	0	-1.826598	-2.781643	-0.655411
14	6	0	0.257291	-2.707606	-1.581065
15	6	0	4.202903	0.682058	-1.704975

16	6	0	4.786349	0.050588	-0.432011
17	6	0	-2.539057	3.264032	0.456292
18	6	0	-2.147393	0.956450	2.450769
19	6	0	1.683545	3.052020	0.578297
20	6	0	1.340799	3.061505	-0.818355
21	6	0	-3.225930	0.739488	-2.509620
22	6	0	-4.504771	-0.749641	-0.113616
23	6	0	-0.660282	-3.544137	-1.001768
24	1	0	-0.090168	-0.678220	-2.400977
25	1	0	2.108019	0.536529	-2.351215
26	1	0	2.986668	-1.025284	-2.342276
27	1	0	3.342235	0.815011	1.027216
28	1	0	3.578160	-0.953525	1.130971
29	1	0	0.899562	1.903590	2.277630
30	1	0	-0.166876	1.968969	-1.973106
31	1	0	-2.698939	-3.189055	-0.159414
32	1	0	1.235133	-2.987587	-1.951469
33	1	0	4.014198	1.747297	-1.552291
34	1	0	4.842724	0.557435	-2.579670
35	1	0	5.219638	-0.928822	-0.652555
36	1	0	5.554879	0.667942	0.034822
37	1	0	-1.953307	3.953345	1.072277
38	1	0	-3.585538	3.333168	0.769780
39	1	0	-2.469474	3.599692	-0.581106
40	1	0	-1.630740	1.634587	3.136886
41	1	0	-1.775213	-0.053673	2.632168
42	1	0	-3.213265	0.977405	2.698619
43	1	0	2.445807	3.667945	1.039597
44	1	0	1.793155	3.695715	-1.570994
45	1	0	-2.299525	1.094768	-2.970494
46	1	0	-3.900084	1.596372	-2.416511
47	1	0	-3.682588	0.017015	-3.193362
48	1	0	-4.921427	-1.517524	-0.772852
49	1	0	-5.253794	0.039792	-0.001201
50	1	0	-4.340867	-1.199321	0.869422
51	1	0	-0.523780	-4.599506	-0.805596

Optimized geometry of 2c

1	13	0	-0.193394 -0.117384 -0.453216
2	17	0	-0.322638 -1.300378 -2.282335
3	6	0	1.840178 0.085507 -0.022424
4	6	0	-1.103324 -1.073241 1.094165
5	6	0	-0.987099 1.739419 -0.834300
6	7	0	2.856119 -0.694167 -0.473453
7	7	0	2.439605 1.191908 0.496373
8	6	0	2.650570 -2.094266 -0.935725
9	6	0	1.699560 2.189868 1.310654
10	14	0	-2.981158 -1.244072 0.756688
11	6	0	-0.748985 -0.280709 2.285924
12	6	0	-0.343679 -2.320871 1.271700
13	6	0	-2.390834 1.444099 -1.234666
14	6	0	-0.327973 2.217910 -2.060979
15	6	0	4.085007 -0.062847 -0.284086
16	6	0	3.822323 1.128140 0.330038
17	6	0	3.095410 -2.299884 -2.381966
18	6	0	3.247502 -3.096141 0.055884
19	6	0	1.774432 3.604735 0.737586
20	6	0	2.099533 2.107210 2.786458
21	14	0	-3 732777 0 835560 -0 086292
22	6	Ő	-3 828087 -1 736286 2 379117
23	6	0	-3 282001 -2 608519 -0 517066
24	6	0	0 144393 -0 985329 3 057629
25	6	ő	0.398932 -2.248896 2.426853
26	6	0	-2 462127 1 616250 -2 500513
20	6	0	-1 201383 2 090408 -3 105434
27	6	0	5 402244 -0 578531 -0 765765
20	6	0	4 781203 2 220614 0 675877
20	6	0	-5 357602 0 655464 -1 040181
30	6	0	-3 969645 2 077798 1 331507
32	1	0	1 573880 -2 226316 -0 906055
32	1	0	0.660326 1.851058 1.255021
24	1	0	0.0000000 1.000000 1.200021
34 2E	1	0	1166019 0 690001 2 529100
22	1	0	-1.100518 0.085051 2.528100
20	1	0	-0.377550 -5.155780 0.381042
20	1	0	2 620142 1 640676 2 020002
20	1	0	2.039142 -1.349373 -3.029092
39	1	0	2.751729 -3.260397 -2.718710
40	1	0	4.180210 -2.209438 -2.493890
41	1	0	4.338533 -3.106281 0.050427
42	1	0	2.907/23 -4.0991/1 -0.213019
45	1	0	2.898237 -2.879732 1.000400
44	1	0	1.009303 4.242009 1.270748
45	1	0	1.490301 3.018412 -0.310281
46	1	0	2.766527 4.044533 0.849273
47	1	0	3.096092 2.508436 2.975936
48	1	0	2.05/192 1.0/3/44 3.130114
49	1	U	1.390/81 2.692305 3.377684
50	1	U	-3.3/5355 -2.648314 2.780597
51	1	U	-4.894952 -1.925344 2.222546
52	1	0	-3.726794 -0.952615 3.133985
53	1	0	-4.355574 -2.725311 -0.695892
54	1	0	-2.896061 -3.566893 -0.155925
55	1	U	-2.795750 -2.382379 -1.467650

56	1	0	0.575395	-0.656473	3.995026
57	1	0	1.062230	-3.015474	2.807914
58	1	0	-3.329329	1.408715	-3.214502
59	1	0	-0.979936	2.283710	-4.147284
60	1	0	6.211786	0.008143	-0.331867
61	1	0	5.485478	-0.502931	-1.853494
62	1	0	5.569425	-1.619235	-0.491610
63	1	0	4.657725	2.580346	1.696972
64	1	0	4.668691	3.076663	0.004573
65	1	0	5.804939	1.860067	0.578630
66	1	0	-6.160815	0.303141	-0.386068
67	1	0	-5.255009	-0.060013	-1.860622
68	1	0	-5.665781	1.615815	-1.465467
69	1	0	-3.026844	2.257500	1.856553
70	1	0	-4.694704	1.715132	2.066540
71	1	0	-4.323961	3.038625	0.944832

Optimized geometry of 2d

1	14	0	-3.437972	1.191237 0.667381
2	14	0	-3.437962	-1.191245 0.667394
3	6	0	-1.904661	1.652335 -0.383867
4	6	0	-4.990721	1.980107 -0.070922
5	6	0	-3.174719	1.829677 2.428969
6	6	0	-1.904658	-1.652334 -0.383866
7	6	0	-4.990713	-1.980133 -0.070882
8	6	0	-3.174684	-1.829658 2.428988
9	13	0	-0.745642	0.000001 -0.1/3004
10	6	0	-1.112605	2.833998 -0.013375
11	6	0	-2.086078	1./9454/ -1.841956
12	6	0	-1.112598	-2.033990 -0.01330/
14	17	0	-2.080085	-0.000003 1.81/087
14	16	0	1 011070	-0.000003 1.814087
16	6	0	-0.828913	3 565724 -1 140499
17	6	0	-1 431399	2 920517 -2 273916
18	6	õ	-0.828916	-3.565718 -1.140518
19	6	õ	-1.431414	-2.920507 -2.273926
20	6	õ	2.354636	0.000000 -0.593823
21	7	0	2.987998	1.092482 -0.104227
22	7	0	2.987998	-1.092482 -0.104227
23	6	0	4.047753	0.682910 0.703134
24	6	0	2.535122	2.481231 -0.383628
25	6	0	4.047753	-0.682910 0.703134
26	6	0	2.535123	-2.481231 -0.383631
27	6	0	4.964571	1.604139 1.438127
28	6	0	2.277715	3.268445 0.901185
29	6	0	3.472625	3.177640 -1.369730
30	6	0	4.964573	-1.604138 1.438127
31	6	0	2.277723	-3.268450 0.901181
32	6	0	3.472622	-3.177635 -1.369740
33	1	0	-4.856765	3.062655 -0.158098
34	1	0	-5.199405	1.587440 -1.069174
35	1	0	-5.865836	1.790787 0.558813
36	1	0	-3.138461	2.923081 2.443950
37	1	0	-3.988276	1.506161 3.085310
38	1	0	-2.236934	1.448575 2.841095
39	1	0	-4.856762	-3.062683 -0.158030
40	1	0	-5.199399	-1.587491 -1.069144
41	1	0	-5.865826	-1.790794 0.558850
42	1	0	-3.138411	-2.923060 2.443986
43	1	0	-3.988239	-1.506142 3.085331
44	1	0	-2.236901	-1.448536 2.841099
45	1	0	-0.799552	3.060130 0.996353
46	1	0	-2.653726	1.119573 -2.467734
4/	1	0	-0.799535	-3.060134 0.996337
48	1	0	-2.653744	-1.119561 -2.46//22
49	1	0	-0.244980	4.4///25 -1.1/8103
50	1	0	-1.3/1//1	3.203339 -3.298240
52	1	0	-0.244383	-3.2653// -3.208258
52	1	0	1 573137	2 346794 -0 875358
54	1	0	1 573136	-2 346792 -0 875355
55	1	0	5 268523	2.540752 0.075555
56	1	õ	4.501008	1.991997 2.348858
57	1	0	5.868322	1.068871 1.730163
58	1	0	1.700722	2.667435 1.606095
59	1	0	3.195498	3.609939 1.381246
60	1	0	1.684862	4.149272 0.647942
61	1	0	3.571982	2.590725 -2.285365
62	1	0	3.052088	4.150766 -1.634219
63	1	0	4.468316	3.345129 -0.952426
64	1	0	5.268517	-2.454177 0.827097
65	1	0	4.501013	-1.991988 2.348864
66	1	0	5.868327	-1.068872 1.730153
67	1	0	1.700737	-2.667442 1.606098
68	1	0	3.195509	-3.609949 1.381234
69	1	0	1.684867	-4.149274 0.647938
70	1	0	3.571972	-2.590717 -2.285374
71	1	0	3.052087	-4.150762 -1.634227
72	1	0	4.468317	-3.345121 -0.952442

Optimized geometry of donor-free chloro aluminocenophane

	0				
1	13	0	-1.279586	-0.005377	-0.121935
2	17	0	-3.055224	-0.133402	1.018386
3	6	0	0.005673	-1.716352	-0.109055
4	6	0	-0.966170	1.803135	-1.256637
5	14	0	1.756324	-1.150356	0.306995
6	6	0	-0.673005	-1.578898	-1.419248
7	6	0	-0.733998	-2.721888	0.580472
8	6	0	-0.049084	1.717781	-0.097004
9	6	0	-2.022491	2.673186	-0.907128
10	14	0	1.767809	1.177603	-0.145377
11	6	0	3.014496	-2.130850	-0.709338
12	6	0	2.028831	-1.452503	2.153911
13	6	0	-1.735825	-2.514248	-1.451689
14	6	0	-1.766991	-3.203256	-0.232139
15	6	0	-0.655274	2.538573	0.906282
16	6	0	-1.828347	3.115144	0.409647
17	6	0	2.703604	2.130601	1.191055
18	6	0	2.466351	1.577010	-1.857499
19	1	0	-0.714616	1.499248	-2.265155
20	1	0	-0.239056	-1.099765	-2.289797
21	1	0	-0.553535	-3.017740	1.605137
22	1	0	-2.863316	2.916554	-1.541979
23	1	0	2.918290	-3.202300	-0.509749
24	1	0	4.038594	-1.829901	-0.466944
25	1	0	2.862915	-1.973586	-1.780830
26	1	0	3.018392	-1.104513	2.463540
27	1	0	1.958475	-2.518341	2.390843
28	1	0	1.284155	-0.923880	2.755824
29	1	0	-2.429467	-2.639272	-2.271928
30	1	0	-2.513445	-3.927818	0.061662
31	1	0	-0.275457	2.656731	1.912267
32	1	0	-2.511365	3.735777	0.972308
33	1	0	3.757571	1.837708	1.212837
34	1	0	2.284518	1.934159	2.181622
35	1	0	2.651290	3.207725	1.008095
36	1	0	1.926460	1.042971	-2.644888
37	1	0	3.519737	1.289621	-1.926729
38	1	0	2.388820	2.648291	-2.065970

Optimized geometry of donor-free bromo aluminocenophane

1	35	0	-2.924608	-0.51/6/2	0.765859
2	13	0	-0.936630	-0.121907	-0.289362
3	6	0	0.484688	-1.509343	-0.255437
4	6	0	-0.030899	1.829714	-0.388303
5	6	0	-0.724808	1.450497	-1.646498
6	14	0	1.925686	-0.685745	0.701208
7	6	0	0.015027	-2.811297	0.253974
8	6	0	0.734323	-1.769614	-1.700841
9	14	0	1.807453	1.578293	0.009189
10	6	0	-0.951023	2.664156	0.298239
11	6	0	-1.976378	2.131856	-1.660743
12	6	0	3.546981	-1.584235	0.352133
13	6	0	1.507203	-0.760730	2.547081
14	6	0	-0.021499	-3.716749	-0.770565
15	6	0	0.421665	-3.073063	-1.979464
16	6	0	2.815283	1.942693	-1.548628
17	6	0	2.271778	2.769093	1.399709
18	6	0	-2.109853	2.855456	-0.477112
19	1	0	-0.224595	1.066708	-2.527750
20	1	0	-0.281810	-2.990767	1.277916
21	1	0	1.138767	-1.050296	-2.401816
22	1	0	-0.792631	3.061894	1.291893
23	1	0	-2.715880	2.049419	-2.445306
24	1	0	3.452475	-2.644687	0.603369
25	1	0	4.365583	-1.163475	0.944057
26	1	0	3.815364	-1.511731	-0.704520
27	1	0	1.451824	-1.797994	2.889650
28	1	0	0.545207	-0.286290	2.765943
29	1	0	2.270705	-0.249340	3.140430
30	1	0	-0.346350	-4.746212	-0.695286
31	1	0	0.500294	-3.548554	-2.948548
32	1	0	2.530410	1.281683	-2.371862
33	1	0	3.883954	1.798862	-1.363563
34	1	0	2.659767	2.974720	-1.876911
35	1	0	2.102301	3.806676	1.097370
36	1	0	3.327351	2.661359	1.666204
37	1	0	1.681577	2.575372	2.299570
38	1	0	-2.985710	3.409698	-0.171015

5. References

- 1. N. Kuhn and T. Kratz, *Synthesis*, 1993, 561-562.
- a) D. L. Schmidt and E. E. Flagg, *Inorg. Chem.*, 1967, **6**, 1262-1265; b) P. Andrews, C. M. Latham, M. Magre, D. Willcoxa and S. Woodward, *Chem. Commun.*, 2013, **49**, 1488-1490.
- 3. G. Sheldrick, Acta Cryst. A, 2008, **64**, 112-122.
- Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian Inc., Wallingford CT, 2016.
- a) A. D. Becke, J. Chem. Phys., 1993, 98, 5648-5652; b) C.Lee, W. Yang and R. G. Parr, Phys. Rev. B, 1988, 37, 785-789; c) S. H. Vosko, L. Wilk and M. Nusair, Can. J. Phys., 1980, 58, 1200-1211; d) P. J. Stephens, F. J. Devlin, C. F. Chabalowski and M. J. Frisch, J. Chem. Phys., 1994, 98, 11623-11627; e) S. Grimme, J. Antony, S. Ehrlich and H. Krieg, J. Chem. Phys., 2010, 132, 154104; f) L. A. Curtiss, M. P. McGrath, J. P. Blaudeau, N. E. Davis and R. C. Binning Jr., J. Chem. Phys., 1995, 103, 6104-6113; g) R. C. Binning and L. A. Curtiss, Comput. Chem., 1990, 11, 1206-1216; h) M. P. McGrath and L. Radom, J. Chem. Phys., 1991, 94, 511-516; i) A. D. McLean and G. S. Chandler, J. Chem. Phys., 1980, 72, 5639-5648; j) R. Krishnan, J. S. Binkley, R. Seeger and J. A. Pople, J. Chem. Phys., 1980, 72, 650-654; k) A. Bergner, M. Dolg, W. Küchle, H. Stoll and H. Preuß, Mol. Phys., 1988, 65, 1321-1328.