Supplementary Information for

Stoichiometry of An(III)-DMDOHEMA complexes formed during solvent extraction

P. Weßling, *^{a,b} M. Trumm,^a A. Geist,^a and P. J. Panak^{a,b}

^{a.} Karlsruhe Institute for Technology (KIT), Institute for Nuclear Waste Disposal (INE), P.O. Box 3640, 76021 Karlsruhe, Germany. E-mail: patrik.wessling@kit.edu; Tel: +49 (0)721 60824652

^{b.} Ruprecht-Karls-Universität, Heidelberg, Institut für Physikalische Chemie, Im Neuenheimer Feld 234, 69120 Heidelberg, Germany.

Table of Contents

Fluorescence lifetime of Cm(III) in 1-octanol and 1-octanol with 1.7 mol/L water	3
Fluorescence spectra of Cm(III) in the aqueous phase from extraction experiments	4
Influence of the proton concentration	4
Fluorescence lifetime of Cm(III) in the organic and aqueous phase of extraction experiments	5
Influence of the proton concentration	5
Organic phase	5
Aqueous phase	5
Tabulation	6
Influence of the nitrate concentration	6
Comparison of the vibronic sideband spectra of the organic phases extracted from aqueous and deuterated phases	7

Fluorescence lifetime of Cm(III) in 1-octanol and 1-octanol with 1.7 mol/L water

Fig. S 1 Decrease of the fluorescence intensity of Cm(III) in 1-octanol and 1-octanol with 1.7 mol/L water with increasing delay ($c(Cm) = 1 \times 10^{-7} \text{ mol/L}$)

Fluorescence spectra of Cm(III) in the aqueous phase from extraction experiments

Influence of the proton concentration

Fig. S 2 Normalized fluorescence emission spectra of Cm(III) in aqueous phases from solvent extraction experiments at varied proton concentrations. $(c(Cm(III))_{ini} = 1 \times 10^{-7} \text{ mol/L}, c(NO_3^-)_{ini} = 6.0 \text{ mol/L}), c(DMDOHEMA)_{ini} = 0.4 \text{ mol/L})$

Fluorescence lifetime of Cm(III) in the organic and aqueous phase of extraction experiments

Fig. S 3 Decay of the fluorescence intensity in the organic phase at varied proton concentrations. $c(Cm(III))_{ini} = 1 \times 10^{-7} \text{ mol/L}, c(NO_3^{-})_{ini} = 6.0 \text{ mol/L}), c(DMDOHEMA)_{ini} = 0.4 \text{ mol/L}.$

Fig. S 4 Decay of the fluorescence intensity in the aqueous phase at varied proton concentrations. $c(Cm(III))_{ini} = 1 \times 10^{-7} \text{ mol/L}, c(NO_3^{-})_{ini} = 6.0 \text{ mol/L}), c(DMDOHEMA)_{ini} = 0.4 \text{ mol/L}.$

Tabulation

$$n(H_20)=0.65 \cdot k_{obs}[ms^{-1}] - 0.88$$
 (1)

Tab. S 1 Fluorescence lifetime (τ) of Cm(III) in both organic and aqueous phases from solvent extraction experiments at varied proton concentrations. (c(Cm(III))_{ini} = 1 x 10⁻⁷ mol/L, c(NO₃⁻)_{ini} = 6.0 mol/L), c(DMDOHEMA)_{ini} = 0.4 mol/L). The number of water molecules (n(H₂O)) in the first coordination sphere is calculated by equation 1.

c(H⁺) [mol/L]	c(NO₃⁻) [mol/L]	c(DMDOHEMA) [mol/L]	τ _{org} [μs]	n(H ₂ O) _{org}	τ _{aq} [μs]	n(H ₂ O) _{aq}
6.04 E+0	6.04 E+0	4.00 E-1	281 ± 9	1.4 ± 0.5	94 ± 7	6.0 ± 0.5
3.16 E+0	6.04 E+0	4.00 E-1	267 ± 8	1.6 ± 0.5	91 ± 5	6.2 ± 0.5
1.00 E+0	6.04 E+0	4.00 E-1	273 ± 8	1.5 ± 0.5	89 ± 5	6.4 ± 0.5
5.60 E-1	6.04 E+0	4.00 E-1	265 ± 12	1.6 ± 0.5	88 ± 5	6.5 ± 0.5
4.00 E-1	6.04 E+0	4.00 E-1	273 ± 12	1.5 ± 0.5	87 ± 8	6.6 ± 0.5
3.16 E-1	6.04 E+0	4.00 E-1	291 ± 11	1.4 ± 0.5	90 ± 5	6.5 ± 0.5
1.80 E-1	6.04 E+0	4.00 E-1	275 ± 11	1.5 ± 0.5	91 ± 5	6.3 ± 0.5
1.00 E-1	6.04 E+0	4.00 E-1	315 ± 12	1.2 ± 0.5	88 ± 5	6.5 ± 0.5
3.16 E-2	6.04 E+0	4.00 E-1	315 ± 12	1.2 ± 0.5	88 ± 5	6.5 ± 0.5
1.00 E-2	6.04 E+0	4.00 E-1	315 ± 12	1.2 ± 0.5	88 ± 5	6.5 ± 0.5
1.00 E-3	6.04 E+0	4.00 E-1	301 ± 11	1.3 ± 0.5	90 ± 5	6.6 ± 0.5

Influence of the nitrate concentration

Tab. S 2 Fluorescence lifetime (τ) of Cm(III) in both organic and aqueous phases in extraction experiments at varied nitrate concentrations. (c(Cm(III))_{ini} = 1 x 10⁻⁷ mol/L, c(H⁺)_{ini} = 1 mol/L), c(DMDOHEMA)_{ini} = 0.4 mol/L). The number of water molecules (n(H₂O)) in the first coordination sphere are calculated by equation 1.

c(NO₃⁻) [mol/L]	c(H⁺) [mol/L]	c(DMDOHEMA) [mol/L]	τ _{org} [μs]	n(H ₂ O) _{org}	τ _{aq} [μs]	n(H ₂ O) _{aq}
6.04 E+0	1.00 E+0	4.00 E-1	273 ± 8	1.4 ± 0.5	90 ± 7	6.3 ± 0.5
5.00 E+0	1.00 E+0	4.00 E-1	321 ± 13	1.1 ± 0.5	88 ± 6	6.5 ± 0.5
2.00 E+0	1.00 E+0	4.00 E-1	250 ± 10	1.5 ± 0.5	78 ± 6	7.4 ± 0.5
1.00 E+0	1.00 E+0	4.00 E-1	306 ± 12	1.2 ± 0.5	76 ± 5	7.8 ± 0.5

Fig. S 5 Top: Comparison of the vibronic side-band spectra of the 1:3 Cm(III)-DMDOHEMA (left) and 1:4 Cm(III)-DMDOHEMA complexes (right) extracted from aqueous and deuterated phases. Bottom: Decay of the fluorescence intensity. 1:3 (left) and 1:4 (right) Cm(III)-DMDOHEMA complexes. c(Cm(III))_{ini} = 1 x 10⁻⁷ mol/L; c(DMDOHEMA) = 0.4 mol/L; c(NO₃⁻)_{ini} = 6.0 mol/L, c(H⁺)_{ini} = 6.0 mol/L (1:3 complex) and 10⁻³ mol/L (1:4 complex).