Supporting Information

2-Aminophenolate Ligands for Phosphorus(V): A Lithium Salt Featuring the Chiral $[P(OC_6H_4NR)_3]^-$ Anion

Chuantian Zhan, Zeyu Han, Brian O. Patrick and Derek P. Gates*

Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, Canada, V6T 1Z1. E-mail: <u>dgates@chem.ubc.ca</u>

Fig. S1 The minor component (7%) in the molecular structure for intermediate 3a (thermal ellipsoids are displayed at 50% probability level). Hydrogen atoms are omitted for clarity. Bond lengths and angles are similar to those found in the major structure.

Fig. S2 ³¹P{¹H} NMR spectra (121 MHz, CDCl₃, 298 K) of phosphoranes 2a-c and intermediate 3a.

Fig. S3 ¹H NMR spectra (300 MHz, CDCl₃, 298 K) of phosphoranes: (a) 2a; (b) 2b; (c) 2c; (d) 3a recrystallized from CH_2Cl_2 (* indicates the residual $CHCl_3$ and \dagger indicates the residual CH_2Cl_2 solvent).

Fig. S4 ¹³C{¹H} NMR spectrum (100.5 MHz, CD₂Cl₂, 298 K) of phosphorane 2a (* indicates the solvent).

Fig. S5 $^{19}\text{F}\{^{1}\text{H}\}$ NMR spectrum (282 MHz, CDCl_3, 298 K) of phosphorane 2c.

Fig. S6 ¹H NMR spectra (400 MHz, DMSO-d₆, 298 K) of Li(THF)₃ fac-[4a] (* indicates the solvent).

Fig. S7 ¹H{³¹P} NMR spectra (400 MHz, DMSO-*d*₆, 298 K) of Li(THF)₃ *fac*-[4a].

Fig. S8 ¹³C{¹H} NMR spectra (100.5 MHz, DMSO-*d*₆, 298 K) of Li(THF)₃ *fac*-[4a] (* indicates the solvent).

Fig. S9 ¹H-¹³C HSQC NMR spectrum (400 MHz for ¹H, DMSO- d_6 , 298 K) of Li(THF)₃ *fac*-[**4a**] (The ordinate axis shows the ¹³C{¹H} NMR spectrum and the abscissa axis shows the ¹H NMR spectrum; * indicates the solvent).

Fig. S10 1 H $^{-13}$ C HMBC NMR spectrum (400 MHz for 1 H, DMSO- d_{6} , 298 K) of Li(THF)₃ *fac*-[4a] (The ordinate axis shows the 13 C{ 1 H} NMR spectrum and the abscissa axis shows the 1 H NMR spectrum; * indicates the solvent).

Fig. S11 ³¹P NMR spectrum (121 MHz, 298 K) of Li(THF)₃ fac-[4a] in DMSO-d₆ over 6 months.

Fig. S12 ¹H-³¹P HMBC NMR spectrum (400 MHz for ¹H, DMSO- d_6 , 298 K) of Li(THF)₃ fac-[4a] (The ordinate axis shows the ³¹P{¹H} NMR spectrum and the abscissa axis shows the ¹H NMR spectrum).

Fig. S13 Partial ¹H-³¹P HMBC NMR spectrum (400 MHz for ¹H, DMSO- d_6 , 298 K) of Li(THF)₃ fac-[4a] (The ordinate axis shows the ³¹P{¹H} NMR spectrum and the abscissa axis shows the ¹H NMR spectrum).

Fig. S14 Partial ¹H-³¹P HMBC NMR spectrum (400 MHz for ¹H, DMSO- d_6 , 298 K) of Li(THF)₃ fac-[4a] (The ordinate axis shows the ³¹P{¹H} NMR spectrum and the abscissa axis shows the ¹H NMR spectrum).