Supporting Information

VS₂: An efficient Catalyst for Electrochemical Hydrogen Evolution Reaction in Acid Medium

Jiban K. Das^{a,b}, Aneeya K. Samantara^{a,b}, Arpan K. Nayak^c, Debabrata Pradhan^c and J. N. Behera^{a,b,*}

e-mail: jnbehera@niser.ac.in

^{*a*} School of Chemical Sciences, National Institute of Science Education and Research (NISER), P.O. Jatni, Khurda 752050, Odisha, India.

^bHomiBhabha National Institute, Mumbai, India

^cMaterials Science Centre, Indian Institute of Technology, Kharagpur 721302, West Bengal, India.

Figure S1 Fourier transform infrared spectrum for graphene oxide and VS $_4$ /rGO composite

Figure S2 High resolution XPS of V2p, S2p, O1s and C1s of VS₄/rGO composite.

Figure S3 Field emission scanning electron microscopic images for VS_4/rGO at low (a) and higher (b) magnifications.

Figure S4 Thermo gravimetric analysis for VS₂ and VS₄/rGO

Figure S5 Nyquist impedance spectrum for the VS $_2$ and VS $_4$ /rGO composites.

Figure S6 Linear sweep voltamograms for VS₂, VS₄/rGO and Pt/C before and after iR compensation in 0.1M H₂SO₄ electrolyte. The LSVs are recorded at a sweep rate of 5 mV/s.

Figure S7 (a, c) are the cyclic voltammograms in $0.1M H_2SO_4$ at different scan rates (10 to 400 mV/s) and (b, d) are the plot of scan rate vs. cathodic and anodic current at -0.05 V for VS₂ and VS₄/rGO.

Sl. No.	Sample	Electrolyte H ₂ SO ₄ (M)	Over potential 10mA/cm ² (mV)	Tafel slope (mV/dec)	Reference
1	1T MoS ₂	0.5	100	40	Nano Lett. 2013, 13, 6222
2	1T-VS ₂	0.5	68	34	Adv. Mater. 2015, 27, 5605
3	CoS ₂ /rGO	0.5	150	48	Nano Convergence, 2016, 3:5.
4	NiS ₂ /rGO	0.5	200	52	Catalysis Communications, 2016, 85, 26
5	2H-MoS ₂ triangle, Mo edge	0.5	201	68	Adv. Mater. 2017, 1701955
6	2H-MoS ₂ basal plane	0.5	425	109	Adv. Mater. 2017, 1701955
7	1T'-MoS ₂ basal plane	0.5	356	84	Adv. Mater. 2017, 1701955
8	H-Co/MoS ₂	0.5	156	58	Nano Energy, 2017, 39, 409
9	WS ₂	0.5	337	80	Nanoscale, 2017, 9, 13515
10	Fe-MoS ₂	0.5	136	82	Electrochemica Acta, 2017, 20, 72
11	3D WS ₂ /graphene /Ni	0.5	87	79	Int. journal of hydrogen energy, 2017, 7811.
12	rGO/WS ₂	0.5	229	73	Nanoscale, 2015, 7, 14760
13	Annealed WS ₂ /CC	0.5	$\begin{array}{c} 250 \text{ mv at } 15 \\ \text{mA/cm}^2 \end{array}$	50	J. Mater. Chem. A, 2015, 3, 131
14	Freeze-dried WS ₂ /rGO after annealing	0.5	$\frac{300 \text{ mv at } 23}{\text{mA/cm}^2}$	58	Angew. Chem. Int. Ed., 2013, 52, 13751
15	3D WS ₂ /Ni	0.5	115	98	International journal of hydrogen energy, 2017, 42, 7811
16	WS ₂ /3DG sheet	0.5	137 mv at 300 mA/cm ²	131	J. Mater. Chem. A, 2015, 3, 24128
17	MoS ₂	0.5	214	74	ACS Appl. Mater. Interfaces, 2016, 8, 5517
18	WC-CNTs	0.5	145	72	ACS Nano, 2015, 9, 5125
19	VS ₂ Nano flower	0.5	58	34	J. Mater. Chem. A, 2017, 5, 15080
20	VS ₂ Nano plate	0.5	42	36	Chem. Mater. 2016, 28, 5587
21	Vs ₂	0.1	41	36	This Work
22	Vs ₄ /rGO	0.1	210	73	This Work

Table S1. A brief literature survey on metal sulphide catalysts for HER

Figure S8 The long term stability test for HER by the VS₄/rGO modified GCE in 0.1 M H_2SO_4 electrolyte. Here the stability test was carried out by using the Chrono potentiometric technique at a state of art current density of 10 mA/cm².

Figure S9 The long term stability test for HER by the VS_2 modified GCE in 0.1 M H₂SO₄ electrolyte at a current density of 30 mA/cm².

Figure S10 FESEM images for the VS_2 after the Chronopotentiometric measurement at 10 mA/cm².

Figure S11 XRD for the VS₂ after the Chronopotentiometric measurement at current density of 10 mA/cm^2 .

Figure S12 High resolution XPS spectrum for V2p and S2p of VS₂ after the long Chronopotentiometric measurement at 10 mA/cm^2 .