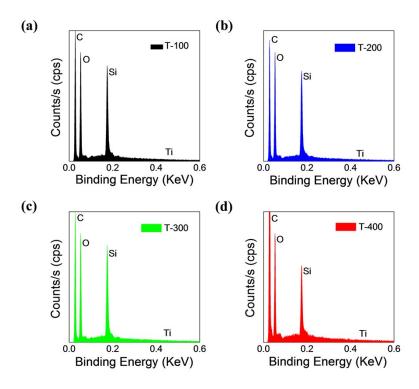
Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2018


Supporting Information

SiO_2 aerogel monolith allows ultralow amounts of TiO_2 for fast and efficient removal of gaseous pollutants

Fangxu Wan, Changhua Wang*, Yonghua Han, Lina Kong, Jingyu Yan, Xintong Zhang* and Yichun Liu

Center for Advanced Optoelectronic Functional Materials Research, and Key
Laboratory of UV-Emitting Materials and Technology of Ministry of Education,
Northeast Normal University, 5268 RenminStreet, Changchun 130024, China
*E-mail: wangch100@nenu.edu.cn; xtzhang@nenu.edu.cn; Fax: +86 431 85099772;

Tel: +8643185099772

Figure S1. Representative EDAX diagrams of TiO_2 -Si O_2 aerogel monolith. The TiO_2 -Si O_2 aerogel monolith were expresses as T-n (n represented for the cycle times which varied from 100 to 400 cycles) (a) T-100; (b) T-200; (c) T-300; (d) T-400.

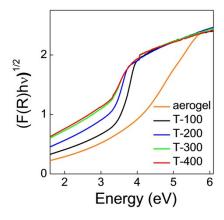


Figure S2. Tauc-plot for samples aerogel and T-n.