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Figure S1. Crystal structure of (L1)2Zn.
Thermal ellipsoids displayed at the 50% probability level. Hydrogen atoms omitted for clarity.
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Figure S2. Conversion-time plots for rac-lactide polymerizations with 7 + 4eq EtOH.
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Figure S3. Linearized conversion-time plots for rac-lactide polymerizations with 7 + 4eq EtOH.
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Figure S4. Conversion-time plots for rac-lactide polymerizations with 10 at different catalyst and lactide

concentrations at RT in CsDs ([10] = 2, 0.5, 0.3 mM).
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Figure S5. Linearized conversion-time plots for rac-lactide polymerizations with 10 at different catalyst
or lactide concentrations at RT in C¢Dg ([10] = 2, 0.5, 0.3 mM).
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Figure S6. MALDI spectrum of PLA produced with 2 (sodium added to the matrix).

Most series agree with the formation of cyclic oligomers. Hydroxide-terminated chains are most likely
obtained by opening of cyclic oligomers with water under MS conditions, since initiation by zinc
hydroxide seems unlikely. The main cyclic oligomer series, m/z = 72n+M(Na*), shows a suppression of
peaks with m/z = 72(2n+1)+M(Na*), which is unexpected in typical transesterifications and reminiscent
of ROP with neutral nucleophiles.
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Figure S7. MALDI spectrum of PLA produced with 7 (2 mM, [lactide] = 200 mM).

Sodium salts were added to the matrix. Most series agree with the formation of cyclic oligomers.
Hydroxide-terminated chains are most likely obtained by opening of cyclic oligomers with water under
MS conditions, since initiation by zinc hydroxide seems unlikely.
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Figure S8. MALDI spectrum of PLA produced with 7 (0.5 mM, [lactide] = 50 mM).

Sodium salts were added to the matrix. Most series agree with the formation of cyclic oligomers.
Hydroxide-terminated chains are most likely obtained by opening of cyclic oligomers with water under
MS conditions.
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Figure S9. MALDI spectrum of PLA produced with 7 (0.5 mM, [lactide] = 50 mM).

Sodium salts were added to the matrix. Most series agree with the formation of cyclic oligomers.
Hydroxide-terminated chains are most likely obtained by opening of cyclic oligomers with water under
MS conditions, since initiation by zinc hydroxide seems unlikely.
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Figure S10. MALDI spectrum of PLA produced with 10 (2 mM, [lactide] = 200 mM, Table 3, entry 4).

Sodium salts were added to the matrix. Most series agree with the formation of cyclic oligomers.
Hydroxide-terminated chains are most likely obtained by opening of cyclic oligomers with water under
MS conditions, since initiation by zinc hydroxide seems unlikely.
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Figure S11. MALDI spectrum of PLA produced with 10 (0.5 mM, [lactide] = 50 mM, Table 3, entry 6).

Sodium salts were added to the matrix. Most series agree with the formation of cyclic oligomers.
Hydroxide-terminated chains are most likely obtained by opening of cyclic oligomers with water under
MS conditions, since initiation by zinc hydroxide seems unlikely.
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Figure S12. MALDI spectrum of PLA produced with 10 (0.5 mM, [lactide] = 200 mM, Table 3, entry 7).

Sodium salts were added to the matrix. Most series agree with the formation of cyclic oligomers.
Hydroxide-terminated chains are most likely obtained by opening of cyclic oligomers with water under
MS conditions, since initiation by zinc hydroxide seems unlikely.
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Figure S13. MALDI spectrum of PLA produced with 10 (0.5 mM, [lactide] = 1000 mM, Table 3, entry

8).

Sodium salts were added to the matrix. Most series agree with the formation of cyclic oligomers.
Hydroxide-terminated chains are most likely obtained by opening of cyclic oligomers with water under

MS conditions, since initiation by zinc hydroxide seems unlikely.
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Figure S14. MALDI spectrum of PLA produced with 10 (0.3 mM, [lactide] = 150 mM, Table 3, entry 9).

Sodium salts were added to the matrix. Most series agree with the formation of cyclic oligomers.
Hydroxide-terminated chains are most likely obtained by opening of cyclic oligomers with water under

MS conditions, since initiation by zinc hydroxide seems unlikely.
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Figure S15. *H-NMR (400 MHz) spectra of 2 in CeDe.
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Figure S16. *C-NMR (101 MHz) spectra of 2 in CgDe.
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Figure S17. *H-NMR (400 MHz) spectra of (L1)2Zn in C¢Ds.
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Figure S18. *H-NMR (400 MHz) spectra of 7 in CeDe.
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Figure S19. *C-NMR (101 MHz) spectra of 7 in CgDe.
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Figure S20. *H-NMR (400 MHz) spectra of 8 in C¢Des.
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Figure S21. *C-NMR (101 MHz) spectra of 8 in CgDe.
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Figure S22. *H-NMR (400 MHz) spectra of 9 in CeDes.
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Figure S23. *C-NMR (101 MHz) spectra of 9 in CgDe.
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Figure S24. *H-NMR (400 MHz) spectra of 10 in CgDe.
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Figure S25. *C-NMR (101 MHz) spectra of 10 in CsDe.
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Figure S26. *H-NMR (400 MHz) spectra of 11 in C¢De.
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Figure S28. *H-NMR (300 MHz) spectra of L2 in CDCls.
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Figure S29. *H-NMR (300 MHz) spectra of L3 in CDCls.
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Figure S30. Selectively decoupled *H-NMR (40 MHz) spectrum of the methine region for PLA produced
with 10 at 0.3 mM concentration.
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Figure S31. Selectively decoupled *H-NMR (40 MHz) spectrum of the methine region for PLA produced
with 10 at 2 mM concentration.
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Variable-temperature NMR studies on compound 11
!H NMR studies were conducted on ds-toluene solutions of 11 in a temperature range of 188 — 343 K on a

Bruker AV500 instrument. Peak assignment are based on COSY and selected 1D-NOESY spectra.
Activation barriers have been estimated from the temperature closest to the coalescence temperature

. o nt(va—vp)h
according to AG* = RT:In ~akaTe
Signals estimated Tc  estimated AG*
ortho pyridine (9.1/8.8 ppm) 278 K 54 kdJ/mol
meta pyridine (6.3/6.0 ppm) 278 K 54 kJ/mol
meta pyridine (6.5/6.3 ppm) 268 K 54 kJ/mol
para pyridine (6.8/6.6 ppm) 268 K 53 kdJ/mol
ArCH; (3.7/2.2 ppm) 313K 57 kJ/mol
PyCH: (3.3/3.0 ppm) 278 K 53 kJ/mol
N(SiMe3). (1.1/0.1 ppm) 248 K 46 kJ/mol
x toluene
x cocrystallized hexane 11 A
XX X HN(SiMe,), from hydrolysis X |
3A 5A/
11
| ) / 8/9 13
1AN 10 8/9 12/
tBu 13
12/13 | N—
X (Me38i)2N/Z|n\ 7
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Figure S32. *H-NMR (500 MHz) spectrum of 11 in ds-toluene at 188 K.
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Figure S33. VT-'H-NMR (500 MHz) spectra of the aromatic region of 11 in dg-toluene at 188-363 K.
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Figure S34. VT-'H-NMR (500 MHz) spectra of the methylene region of 11 in ds-toluene at 188-363 K.
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Figure S35. VT-'H-NMR (500 MHz) spectra of the aliphatic region of 11 in ds-toluene at 188-363 K.
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