Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2018

Supporting Information

Functionalized polyoxometalate-based metal-organic cuboctahedra for selective adsorption toward cationic dyes in aqueous solution

Ya-Ru Gong, Wei-Chao Chen, Liang Zhao,* Kui-Zhan Shao, Xin-Long Wang* and

Zhong-Min Su

Institute of Functional Material Chemistry, Local United Engineering Lab for PowerBatteries, Northeast Normal University, Changchun, 130024, People's Republic of China

*Corresponding author. E-mail address: wangx1824@nenu.edu.cn

Contents

Materials and Physical Measurements

Table S1-S2. Crystallographic data for VMOP-18 and VMOP-19.
Table S3-S4. Bond Lengths for VMOP-18 and VMOP-19.
Table S5-S6. BVS results for the vanadium ions in VMOP-18 and VMOP-19.
Figure S1. Chemical structures of dyes used in this study.
Figure S2. Temporal evolution of UV-Vis absorption spectra for SD⁰.
Figure S3. Temporal evolution of UV-vis absorption spectra for AO⁻.
Figure S4-S5. IR spectra of VMOP-18 and VMOP-19.
Figure S6-S7. The experimental and simulated powder X-Ray diffraction patterns for VMOP-18 and VMOP-19.

Figure S8–S9. TGA curves of MOP-19.

Materials and Physical Measurements

All chemical reagents were purchased from commercial sources and used without further purification. PXRD patterns were recorded ranging from 5° to 50° at room temperature on a Siemens D5005 diffractometer with Cu K α (λ = 1.5418 Å). Thermogravimetric analysis (TGA) of the samples was performed using a PerkinElmer TG-7 analyzer heated from 25 °C to 800 °C at the heating rate of 10 °C·min⁻¹ under a dry nitrogen flow. Elemental analyses (CHN) were conducted on a PerkinElmer 2400 CHN Elemental analyzer. The FT-IR spectra were measured on an Alpha Centaurt FT/IR spectrophotometer in the range 4000–400 cm⁻¹ using KBr pellets. The UV-Vis spectra of the dye solutions were measured at room temperature using a VU-2550 UV-Vis spectrophotometer.

Table S1. Crystallographic data for VMOP-18.

Empirical formula	$C_{164}H_{284}N_{16}O_{124}V_{28}$
Formula weight	5890.37

Crystal system	Cubic
Space group	I-43m
Temperature	173 K
Wavelength	1.54178 Å
Unit-cell dimensions	a = b = c = 27.2524(3) Å
	$\alpha = \beta = \gamma = 90^{\circ}$
Volume	20240.2(7) Å ³
Z	2
Density (calculated)	0.967 g/cm ³
Absorption coefficient	5.666 mm ⁻¹
F(000)	6032
Limiting indices	-17<=h<=30, -23<=k<=22, -11<=l<=30
Theta range for data collection	5.132-63.676°
Reflections collected	13432
Independent reflections	2894 [R(int) = 0.1630]
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	3467 / 263 / 132
Goodness-of-fit on F ²	0.992
Final R indices [I > 2sigma(I)]	R1 = 0.1478, $wR2 = 0.4155$
R indices (all data)	R1 = 0.2000, WR2 = 0.4837
Largest diff. peak and hole	0.48 and -0.65 eA ⁻³

Table S2. Crystallographic data for VMOP-19.

Empirical formula	$C_{156}H_{252}N_{20}O_{108}S_4V_{24}$
Formula weight	5486.56
Crystal system	Cubic
Space group	I-43m
Temperature	173.02 K
Wavelength	0.71073 Å
Unit-cell dimensions	a = b = c = 27.216(2) Å
	$\alpha = \beta = \gamma = 90^{\circ}$
Volume	20160(4) Å ³
Z	2
Density (calculated)	0.904 g/cm ³
Absorption coefficient	0.603 mm ⁻¹
F(000)	5616
Limiting indices	-32<=h<=25, -23<=k<=32, -21<=l<=29
Theta range for data collection	2.59-25.03°
Reflections collected	20589
Independent reflections	3265 [R(int) = 0.1932]
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	3270 / 360 / 128
Goodness-of-fit on F ²	0.943

Final R indices [I > 2sigma(I)]	R1 = 0.1039, wR2 = 0.2400
R indices (all data)	R1 = 0.2107, WR2 = 0.2917
Largest diff. peak and hole	0.48 and -0.53 eA ⁻³

Atom	Atom	Length/Å	Atom	Atom	Length/Å
V1	V11	3.066(10)	04	V11	1.969(14)
V1	01	1.964(11)	04	C9	1.30(4)
V1	02	1.929(14)	05	C1	1.255(11)
V1	03	1.549(17)	O6	V14	2.302(15)
V1	04	1.969(14)	N1	C6	1.305(13)
V1	05	2.047(12)	N1	C6 ⁵	1.305(13)
V1	06	2.302(15)	C1	O5 ⁴	1.255(11)
V2	06	1.46(2)	C1	C2	1.488(13)
V2	O6 ²	1.46(2)	C2	C3	1.248(18)
V2	O6 ³	1.46(2)	C2	C3 ⁴	1.248(18)
V2	07	1.46(3)	C3	C4	1.41(2)
01	V1 ⁴	1.2987(5)	C4	C5	1.335(19)
01	C7	1.55(5)	C5	C4 ⁴	1.335(19)
02	V11	1.929(14)	C5	C6	1.43(3)
02	C8	1.39(4)	C6	N1 ⁶	1.305(13)

Table S3. Bond Lengths forVMOP-18.

The symmetry codes:¹+X,+Z,+Y; ²+Y,+Z,+X; ³+Z,+X,+Y; ⁴+Z,+Y,+X; ⁵+Z,1-X,1-Y; ⁶1-Y,1-Z,+X

 Table S4. Bond Lengths for VMOP-19.

Atom	Atom	Length/Å	Atom	Atom	Length/Å
V1	01	2.002(11)	02	C10	1.535(19)
V1	02	1.978(7)	04	С9	1.53(2)
V1	03	1.517(13)	O6	C8	1.48(2)
V1	04	1.917(9)	N1	C2 ³	1.359(9)
V1	05	2.320(12)	N1	C2	1.360(9)
V1	06	1.961(10)	C2	C3	1.365(13)
S1	05	1.480(15)	C3	C4 ⁴	1.352(10)
S1	O5 ¹	1.480(15)	C3	C4	1.352(10)
S1	O5 ²	1.480(15)	C4	C5	1.352(11)
S1	07	1.352(18)	C5	C6	1.355(10)
01	C7	1.288(13)	C6	C7	1.46(3)

The symmetry codes: ¹1-Y,+Z,1-X; ²1-Z,1-X,+Y; ³1+Z,1-X,-Y; ⁴1-Y,1-X,+Z

Table S5. BVS results for the vanadium ions in VMOP-18.

Atom	BVS calc. for V(IV)	BVS calc. for V(V)
V1	4.24	4.46
V2	4.09	4.41
V3	4.31	4.51
V4	4.18	4.30
V5	4.14	4.36
V6	4.15	4.38

V7	4.82	5.07	
----	------	------	--

Table S6. BVS results for the vanadium ions in VMOP-19.

Atom	BVS calc. for V(IV)	BVS calc. for V(V)
V1	4.006	4.264
V2	4.482	4.769
V3	4.006	4.264
V4	4.482	4.769
V5	4.006	4.264
V6	4.482	4.769

Figure S1. Chemical structures of dyes used in this study.

Figure S2. Temporal evolution of UV-vis absorption spectra for SD⁰.

Figure S3. Temporal evolution of UV-vis absorption spectra for AO.

Figure S5. IR spectra of VMOP-19.

Figure S6. The experimental and simulated powder X-Ray diffraction patterns forVMOP-18.

Figure S7. The experimental and simulated powder X-Ray diffraction patterns forVMOP-19.

Figure S8. TGA curves of MOP-18.

Figure S9. TGA curves of MOP-19.