Electronic Supplementary Information

Methyl camouflage in the ten-vertex *closo*-dicarbaborane(10) series. Isolation of *closo*-1,6- $R_2C_2B_8Me_8$ (R = H and Me) and their monosubstituted analogues

Mario Bakardjiev, Oleg L. Tok, Aleš Růžička, Zdeňka Růžičková, Josef Holub, Drahomír Hnyk, Zbyněk Špalt, Jindřich Fanfrlík, and Bohumil Štíbr^{*}

Dalton Trans.

Key NMR measurements (CDCl₃)

Figure S1. 190.2 MHz ¹¹B-NMR spectrum of $1,6-H_2C_2B_8Me_7-8-OTf(2b)$

Figure S2. 600 MHz ¹H-NMR spectrum of $1,6-H_2C_2B_8Me_7-8-OTf$ (2b)

Figure S5. 150.9 MHz ¹³C-NMR spectrum of *closo*-1,6-H₂C₂B₈Me₇-8-I (2c)

Figure S6. 190.2 MHz ${}^{11}B-{}^{1}H$ -NMR spectrum of 1,6-Me₂C₂B₈H₈ (1b)

Figure S7. 600 MHz 1 H-{ 11 B} NMR spectrum of 1,6-Me₂C₂B₈H₈(**1b**)

Figure S8. 190.2 MHz ¹¹B NMR spectrum of *closo*-1,6-Me₂C₂B₈Me₈ (4a)

Figure S9. 600 MHz ¹H NMR spectrum of *closo*-1,6-Me₂C₂B₈Me₈(4a)

Figure S10. 150.9 MHz ¹³C NMR spectrum of *closo*-1,6-Me₂C₂B₈Me₈ (4a)

Figure S11. 190.2 MHz ¹¹B NMR spectrum of *closo*-1,6-Me₂C₂B₈Me₇-8-OTf (4b)

Figure S13. 600 MHz ¹H NMR spectrum of *closo*-1,6-Me₂C₂B₈Me₇-8-OTf (4b)

Figure S14. 150.9 MHz 13 C NMR spectrum of *closo*-1,6-Me₂C₂B₈Me₇-8-OTf (4b)

Figure S15. 128.3 MHz ¹¹B NMR spectrum of *closo*-1,6-H₂C₂B₈H₈ (**1a**) after a 10 hexposure to EtOH. The spectrum of *closo*-1,6-H₂C₂B₈Me₈ (**2a**) has not changed (see Figs. 5 and S15) after 48 h under similar conditions.

Figure S15. Stick diagrams comparing the ¹¹B NMR chemical shifts (128 or 190 MHz) and relative intensities for *closo* compounds $1,6-H_2C_2B_8H_8$ (**1a**),⁶ $1,6-H_2C_2B_8Me_8$ (**2a**), $1,6-H_2C_2B_8Me_7$ -8-OTf (**2b**), and $1,6-H_2C_2B_8Me_7$ -8-I (**2c**). Red sticks indicate the B-Me singlets, blue the B-X signals; black sticks stand for BH doublets.

Figure S16. Stick diagrams comparing the ¹¹B NMR chemical shifts (128.3 or 190.2 MHz) and relative intensities for *closo* compounds 1,6-Me₂C₂B₈H₈ (**1b**), 1,6-Me₂C₂B₈Me₈ (**4a**), 1,6-Me₂C₂B₈Me₇-8-OTf (**4b**), and 1,6-Me₂C₂B₈Me₇-8-I (**4c**). Red sticks indicate the B-Me singlets, blue the B-X signals; black sticks stand for BH doublets.

Figure S17. Stick diagrams comparing the ¹H (black sticks), ¹³C (red text), and ¹⁹F (blue text) NMR chemical shifts and relative intensities for *closo* compounds 1,6-H₂C₂B₈H₈ (1a), 1,6-H₂C₂B₈Me₈ (2a), 1,6-H₂C₂B₈Me₇-8-OTf (2b), and 1,6-H₂C₂B₈Me₇-8-I (2c).

Figure S18. Stick diagrams comparing the ¹H (black sticks), ¹³C (red text), and ¹⁹F (blue text) NMR chemical shifts and relative intensities for *closo* compounds 1,6-Me₂C₂B₈H₈(1b), 1,6-Me₂C₂B₈Me₈ (4a) and 1,6-H₂C₂B₈Me₇-8-OTf (4b).

Geometry optimization Cartesian geometry for 2a (MP2/TZVP)

	X	y	z
С	-0.01756	-1.71037	0.60349
В	-0.95469	-1.2324	-0.59318
В	0.93407	-1.24687	-0.58701
В	0.91692	-0.49508	1.09623
В	-0.93709	-0.48227	1.08962
С	0.00101	-0.03153	-1.40529
В	1.31467	0.49596	-0.35221
В	0.00382	1.06734	0.8134
В	-1.31096	0.51645	-0.35892
В	0.01101	1.48686	-0.833
Н	-0.02594	-2.70395	1.02847
С	-1.94255	-2.17563	-1.37837
С	1.91253	-2.20587	-1.36487
С	-1.97074	-0.63312	2.27773
С	1.94087	-0.66397	2.29053
Н	0.00229	-0.11839	-2.48932
С	-2.76361	1.00387	-0.78159
С	2.77684	0.96187	-0.76568
С	0.03324	2.18814	1.94262
С	0.0189	2.8284	-1.65349
Н	-2.54133	0.28361	2.44053
Н	-2.68564	-1.4378	2.08251
Η	-1.45966	-0.8736	3.21455
Η	-2.47955	-1.64488	-2.16661
Η	-1.41318	-3.0156	-1.83678
Н	-2.68851	-2.59565	-0.69815
Н	2.46332	-1.68447	-2.14977
Н	2.64693	-2.63671	-0.67887
Н	1.37337	-3.03794	-1.82626
Н	2.53865	0.23639	2.44612
Н	1.41811	-0.8766	3.22764
Н	2.63155	-1.49261	2.1089
Н	3.55675	0.2981	-0.38566
Н	2.87544	0.99821	-1.85475
Н	-0.06923	3.69093	-0.98801
Н	0.94421	2.95094	-2.22274
Н	-0.81401	2.87655	-2.36002
Н	-2.84531	1.07708	-1.87015
Η	-3.55439	0.33475	-0.43491
H	-2.96779	2.00101	-0.38257
H	-0.53858	3.07454	1.65481
H	-0.35933	1.8356	2.89973
H	1.06215	2.51768	2.11924
Н	2.9829	1.96998	-0.39646

Cartesian geometry for 4a (MP2/TZVP)

	X	У	z
С	-1.67976	0.01277	-0.09657
В	-0.68902	1.10738	-0.7116
В	-0.67946	-0.73962	-1.09388
B	-0.81289	-1 09746	0 7036
B	-0.82447	0.71501	1 08218
D C	0.77705	0.71501	1.00210
	0.77795	0.25107	-1.0913
В	0.7492	-1.31189	-0.16/8
В	0.69222	-0.28224	1.3713
В	0.73437	1.27691	0.37223
В	1.81803	-0.01751	0.13253
С	-3.18727	0.04239	-0.22991
С	-1.20609	2.30121	-1.6192
С	-1.18426	-1.47834	-2.40361
С	-1.55703	1.51842	2.24503
Ċ	-1 53874	-2 30662	1 44182
C	1 40793	0.51797	-2 4493
C	1.40795	2 73788	0 55266
C C	1.33030	2.75700	0.55200
C C	1.30303	-2./1922	-0.576
C C	1.1/03/	-0.398	2.80322
C	3.3998/	0.01121	0.05853
H	-3.4998	-0.1312	-1.26504
Н	-3.65352	-0.72846	0.39194
Н	-3.59367	1.01011	0.08196
Н	-0.85	1.9777 2	2.94458
Н	-2.18745	2.32654	1.85048
Н	-2.21287	0.86413	2.83396
Н	-0.40216	2.96756	-1.94959
Н	-1.72361	1.93996	-2.51751
Н	-1.92805	2.91822	-1.06913
Н	-0.37019	-1.93729	-2.97456
Н	-1 88817	-2 28037	-2 14812
Н	-1 71651	-0 79752	-3 08132
Н	-0.82825	-2.99761	1 90864
Н	-2 20726	-1 95121	2 2371
Н	-2.15362	-2 89805	0.75036
и П	2.15502	0.31083	2 75700
	2.04241	-0.51965	-2.75709
	0.00465	0.00000	-3.23401
П	2.04/12	1.40317	-2.39124
H	1.85/6/	-3.18366	0.29/42
H	0.65591	-3.435/3	-0.97142
Н	2.17862	-2.61413	-1.32969
Н	3.84058	-0.14097	1.05146
Н	3.80405	-0.77589	-0.591
Н	3.78525	0.96845	-0.31594
Н	2.13887	2.94875	-0.1878
Н	0.61732	3.54406	0.48465
Н	1.83832	2.82041	1.53534

Н	2.2498	-0.41511	3.00947
Н	0.64375	0.00166	3.61063
Н	0.99831	-1.64878	3.12688

Computed δ(¹¹B) NMR chem. shifts (GIAO-MP2/II//MP2/TZVP) (in ppm, referenced to BF₃.OEt₂)

	B(2,3)	B(4,5)	B(7,9)	B(8)	B(10)
1a	-19.5	-21.0	-27.0	-18.4	22.5
2a	-7.2	-8.2	-13.8	-4.4	28.0
4a	-5.4	-7.9	-11.6	-4.2	26.0