Supporting Information for:

Design and Synthesis of a Family of 1D-Lanthanide-Coordination Polymers Showing Luminescence and Slow Relaxation of the Magnetization

Ana Belén Ruiz-Muelle,^a Amalia García-García,^b Antonio A. García-Valdivia,^b Itziar Oyarzabal,^c Javier Cepeda,^c José M. Seco,^c Enrique Colacio,^b Antonio Rodríguez-Diéguez^b and Ignacio Fernández^{a,*}

^a Department of Chemistry and Physics, Research Centre CIAIMBITAL, University of Almería, Ctra. Sacramento s/n, 04120 Almería, Spain. ^b Departamento de Química Inorgánica, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain. ^c Departamento de Química Aplicada, Facultad de Química, Universidad del País Vasco (UPV/EHU), 20018 Donostia, Spain.

Contents:

- S1. FT-IR (KBr) spectrum of Haapc (1).
- S2. ¹H NMR spectrum of Haapc (1) at room temperature.
- S3. ¹³C NMR (bottom) and DEPT-135 (top) NMR spectra of Haapc (1) at room temperature.
- S4. COSY spectrum of Haapc (1) at room temperature.
- S5. ¹H,¹³C gHMQC spectrum of Haapc (1) at room temperature.
- S6. ${}^{1}H, {}^{13}C$ gHMBC spectrum of Haapc (1) at room temperature.
- S7. FT-IR (KBr) spectrum of complex **2**.
- S8. ¹H NMR spectrum of complex $\mathbf{2}$ at 333 K.
- S9. 1D-gTOCSY spectrum of complex **2** at 333 K.
- S10. ¹³C NMR (bottom) and DEPT-135 (top) NMR spectra of complex **2** at 333 K.
- S11. ¹H,¹³C gHMBC spectrum of complex **2** at 333 K.
- S12. Diffusion NMR Details studies of ligand Haapc (1) and complex 2.
- S13. Structural details of compound **8**.
- S14. Continuous shape measures (CShMs)
- S15. Powder X-ray Data Collection.
- S16. Photoluminescence measurements.
- S17. Ac susceptibility measurements.
- S18. Magneto-caloric effect for gadolinium compound.

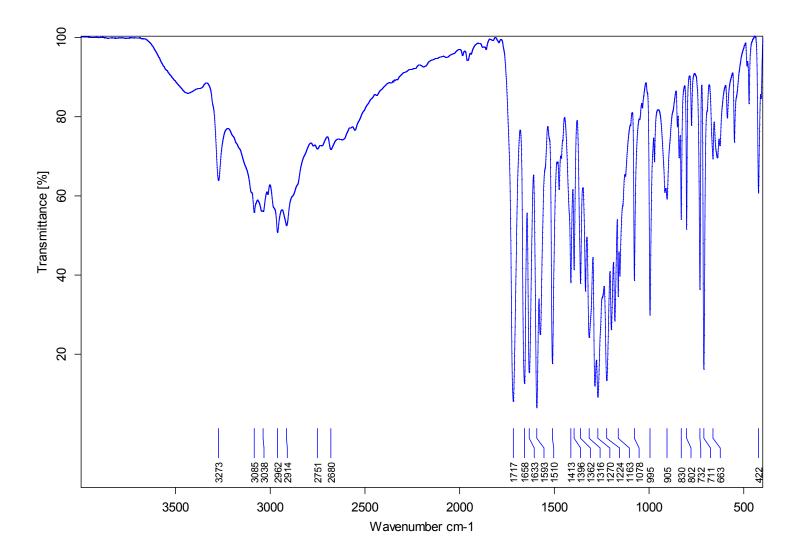


Figure S1. FT-IR (KBr) spectrum of 1.

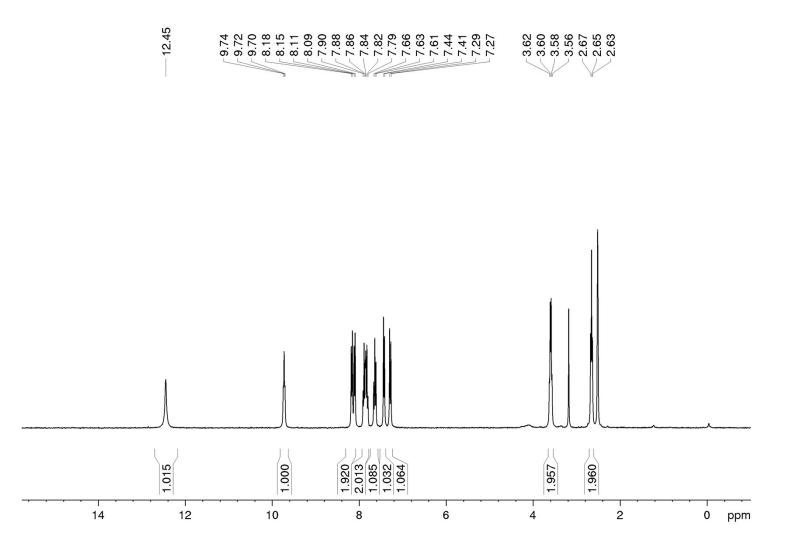
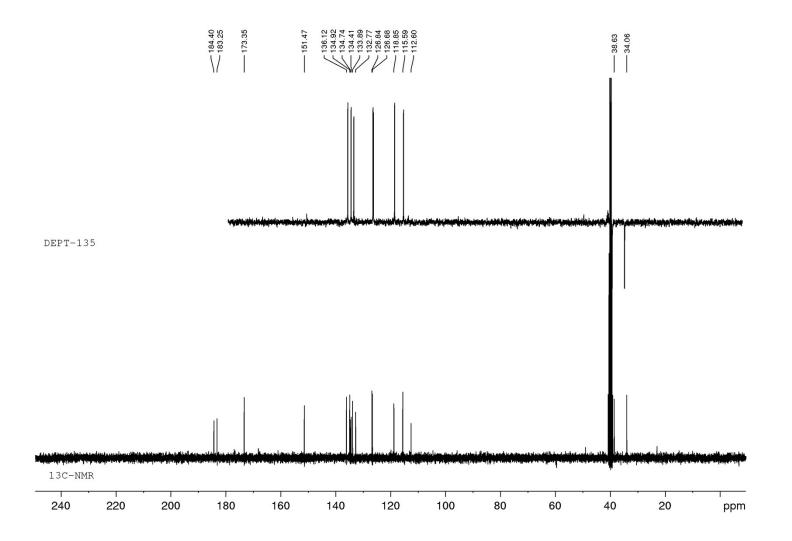
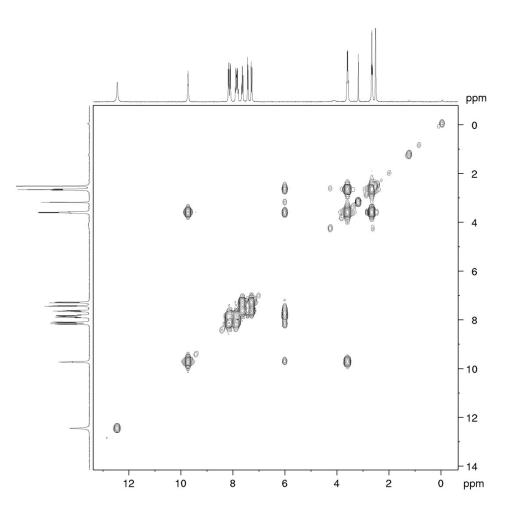
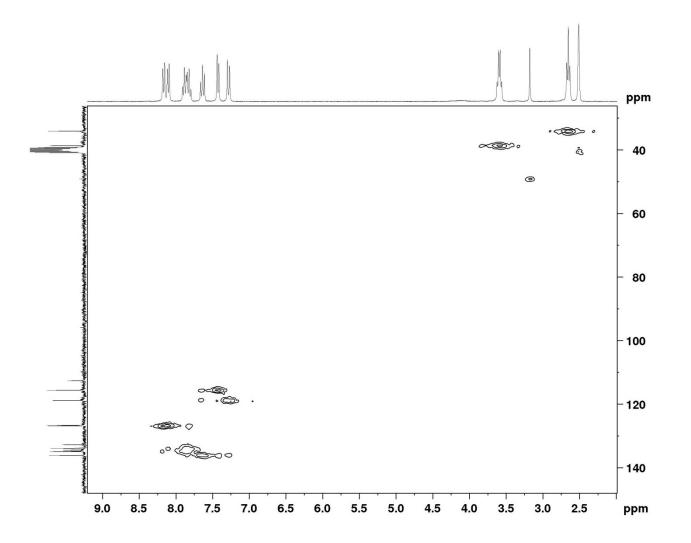


Figure S2. ¹H NMR spectrum of 1 in DMSO-*d*₆ at room temperature (300.13 MHz).

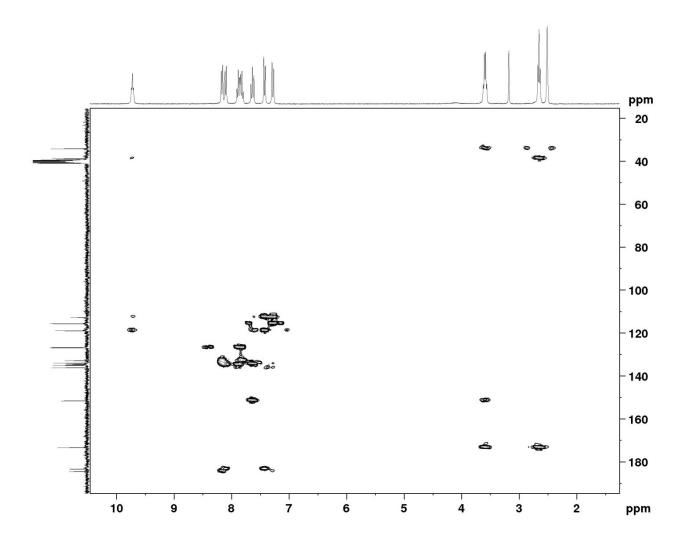

Figure S3. ¹³C NMR (bottom) and DEPT-135 (top) NMR spectra of 1 in DMSO-*d*₆ at room temperature (75.47 MHz).

Figure S4. COSY spectrum of **1** in DMSO- d_6 at room temperature.

Figure S5. ¹H, ¹³C gHMQC spectrum of **1** in DMSO- d_6 at room temperature.

Figure S6. ¹H, ¹³C gHMBC spectrum of **1** in DMSO- d_6 at room temperature.

Figure S7. FT-IR (KBr) spectrum of complex 2.

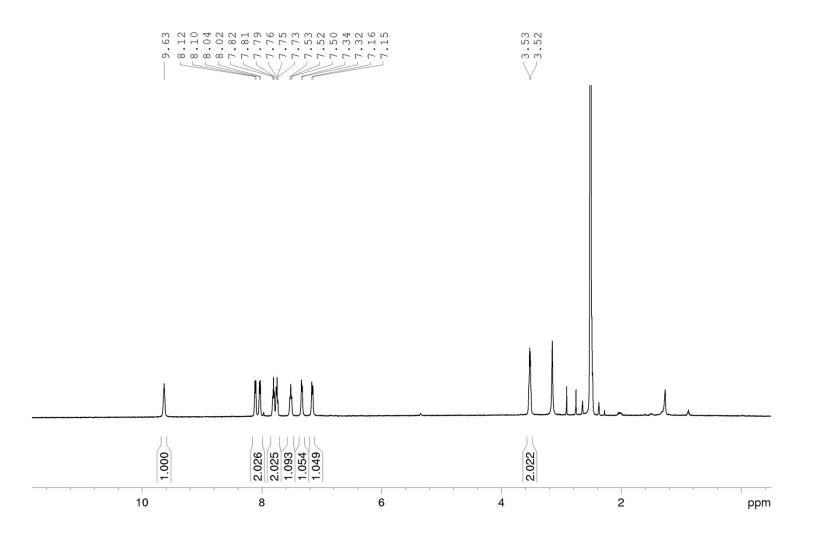
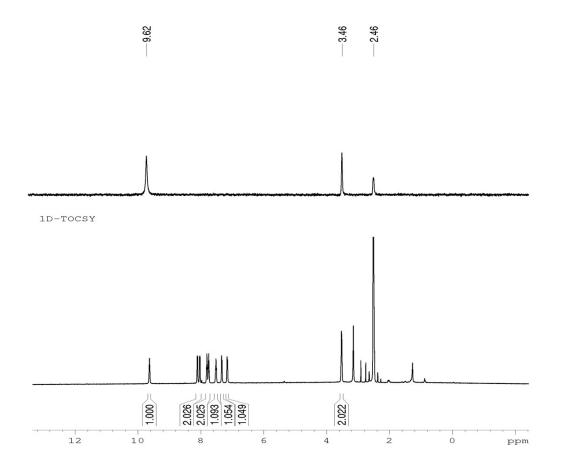



Figure S8. ¹H NMR spectrum of complex 2 in DMSO- d_6 at 333 K (500.13 MHz).

Figure S9. 1D-gTOCSY spectrum of complex **2** in DMSO- d_6 at 333 K.

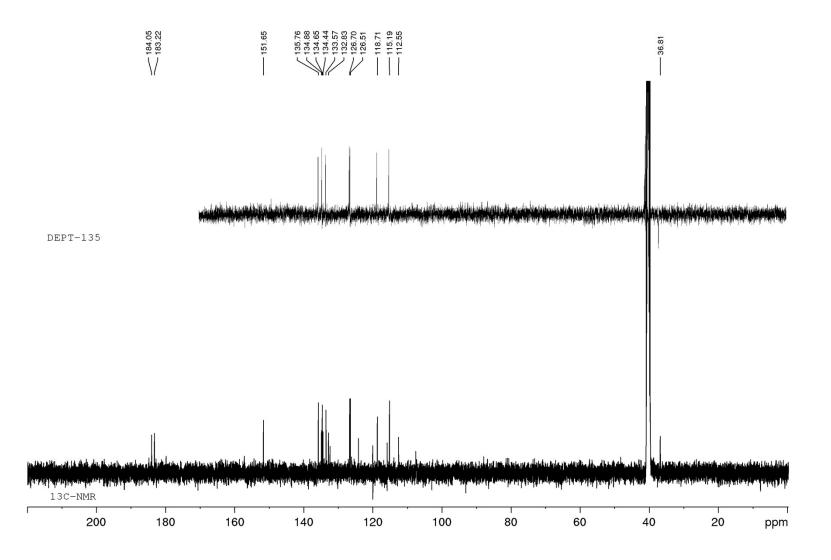
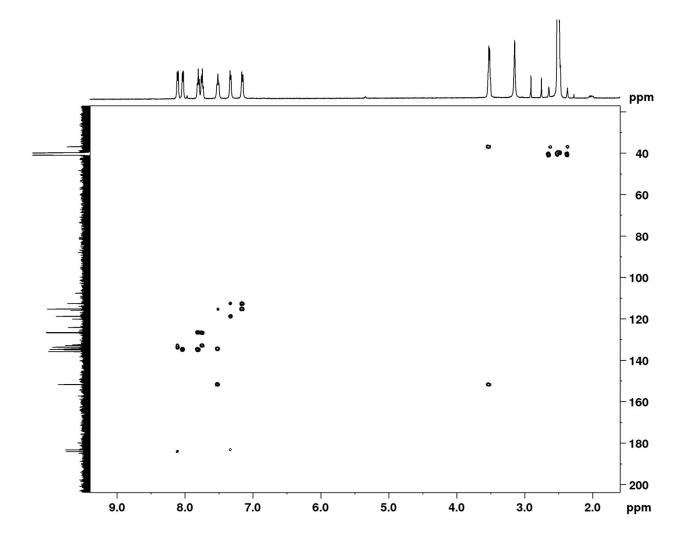



Figure S10. ¹³C NMR (bottom) and DEPT-135 (top) NMR spectra of complex 2 in DMSO-*d*₆ at 333 K (126 MHz).

Figure S11. ¹H, ¹³C gHMBC spectrum of complex **2** in DMSO- d_6 at 333 K.

S12. Diffusion NMR Details studies.

PGSE NMR diffusion measurements were carried out using the stimulated echo sequence and monopolar pairs pulses (stegp).¹ A sine shape was used for the gradient pulses and their strength varied automatically in the course of the experiments. The *D* values were determined from the slope of the regression line $\ln(I/I_0)$ versus G², according to the following equation, and employing the DiffAtOnce package.² I/I_0 = observed spin echo intensity/intensity without gradients, G = gradient strength, Δ = delay between the midpoints of the gradients, D = diffusion coefficient, δ = gradient length.

$$Ln(\frac{I}{I_0}) = -(\gamma\delta)^2 (\Delta - \frac{\delta}{4}) D\frac{4}{\pi^2} G^2$$

The measurements were carried out without spinning. Gradient calibration was carried out by means of a diffusion measurement of HDO in D₂O (*D*(HDO) = 1.902 10⁻⁹ m² s⁻¹).³ To check reproducibility, three different measurements with different diffusion parameters (δ and/or Δ) were always carried out. The experimental error in *D* values was estimated to be smaller than ±2%. All of the data leading to the reported *D* values afforded lines whose correlation coefficients were above 0.999 and 8 to 12 points were used for regression analysis. To check reproducibility, three different measurements with different diffusion parameters (δ and/or Δ) were always carried out. The gradient strength was incremented in 4–8% steps from 2–10% to 98% so that, depending on signal: noise, 12–25 points could be used for regression analysis. The recovery delay was set to 5 times T₁. All diffusion processing and molecular size estimation were performed by using the DiffAtOnce software package available at www.diffatonce.com.

S13. Structural details of compound 8.

RingRing ^b	α	DC	β	DZ	Dist.
1A-1A(v)	0.02	3.582(3)	21.94	3.32	3.17-3.56

Table S1. Structural parameters (Å, °) of π - π interactions of compound 8.^a

[a] Symmetry: (v) -y - 1, -x + 2, -z + 1/2; (vi) -y + 3/2, x + 3/2, z + 3/4. α : dihedral angle between mean planes of the rings (°), DC: distance between ring centroids (Å), β : angle between DC vector and normal to plane(I) (°), DZ: perpendicular distance of the centroids of ring(I) on plane of ring(II) (Å), Dist.: shorter distances between non-hydrogen atoms of rings (I) and (II). [b] Ring: **1A**: C1A, C2A, C7A, C8A, C9A, C14A.

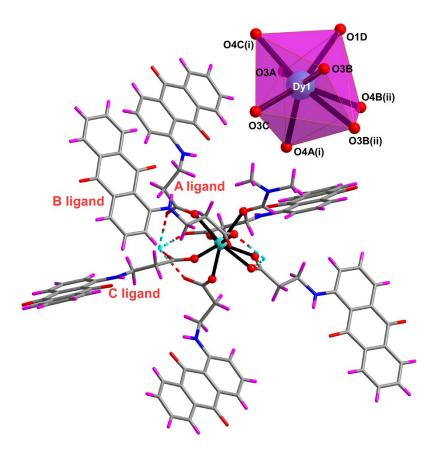


Figure S12. Excerpt of the compound 8 showing the two successive dimeric entities of the 1D chain as well as the coordination sphere.

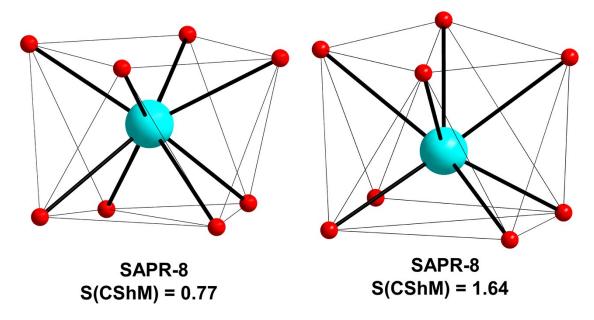

S14. Continuous shape measures (CShMs)

 Table S2. Continuous Shape Measurements for Compound 8.

OP-8	D8h	Octagon
HPY-8	C7v	Heptagonal pyramid
HBPY-8	D6h	Hexagonal bipyramid
CU-8	Oh	Cube
SAPR-8	D4d	Square antiprism
TDD-8	D2d	Triangular dodecahedron
JGBF-8	D2d	Johnson gyrobifastigium J26
JETBPY-8	D3h	Johnson elongated triangular bipyramid J14
JBTPR-8	C2v	Biaugmented trigonal prism J50
BTPR-8	C2v	Biaugmented trigonal prism
JSD-8	D2d	Snub diphenoid J84
TT-8	Td	Triakis tetrahedron
ETBPY-8	D3h	Elongated trigonal bipyramid

OP-8	HPY-8	HBPY-8	CU-8	SAPR-8	TDD-8	JGBF-8
32.048	21.324	13.305	7.972	1.642	2.261	14.384

JETBPY-	JBTPR-8	BTPR-8	JSD-8	TT-8	ETBPY-
26.907	2.917	1.994	5.428	8.799	22.259

Figure S13. DyO₈ coordination environments for compound **8** and $\{[Dy((NH_2)_2-bdc)_{1.5}(DMF)_2] \cdot DMF \cdot H_2O\}_n^4$ with their continuous shape measures.

S15. Powder X-ray Data Collection.

Table S3, S4 and Figure S13 summarize the data resulting from the PXRD patternmatching analyses performed on compounds **2–9**, which confirm the isostructural nature and purity of all samples.

	2	3	4	5
Empirical formula	$C_{54}H_{43}N_4O_{13}Y$	C ₅₄ H ₄₃ LaN ₄ O ₁₃	$C_{54}H_{43}NdN_4O_{13}$	C54H43EuN4O13
Formula weight	1044.84	1094.84	1100.18	1107.90
Crystal system	triclinic	triclinic	triclinic	triclinic
Space group	<i>P</i> –1	<i>P</i> –1	<i>P</i> –1	<i>P</i> –1
a (Å)	8.1575(4)	8.154(2)	8.154(2)	8.154(2)
<i>b</i> (Å)	17.4805(8)	8.154(2)	8.154(2)	8.154(2)
<i>c</i> (Å)	17.9640(6)	20.052(4)	20.052(4)	20.052(4)
α (°)	62.669(2)			
β (°)	80.922(3)			
γ (°)	88.786(2)			
V (Å ³)	1260.7(7)	1333.3(6)	1333.3(6)	1333.3(6)
Ζ	2	4	4	4
Chi ²	1.94	2.94	2.94	2.94

Table S3. PXRD pattern-matching results of compounds 2–5.

Table S4. PXRD pattern-matching results of compounds 6–9.

	6	7	8	9
Empirical formula	$C_{54}H_{43}GdN_4O_{13}$	$C_{54}H_{43}N_4O_{13}Tb$	C ₅₄ H ₄₃ DyN ₄ O ₁₃	C ₅₄ H ₄₃ ErN ₄ O ₁₃
Formula weight	1113.19	1114.86	1118.44	1123.20
Crystal system	triclinic	triclinic	triclinic	triclinic
Space group	P-1	P-1	<i>P</i> –1	<i>P</i> –1
<i>a</i> (Å)	8.1575(4)	8.154(2)	8.154(2)	8.154(2)
<i>b</i> (Å)	17.4805(8)	8.154(2)	8.154(2)	8.154(2)
<i>c</i> (Å)	17.9640(6)	20.052(4)	20.052(4)	20.052(4)
α (°)	62.669(2)			
β(°)	80.922(3)			
y (?)	88.786(2)			
V (Å ³)	1260.7(7)	1333.3(6)	1333.3(6)	1333.3(6)
Z	2	4	4	4
Chi ²	1.94	2.94	2.94	2.94

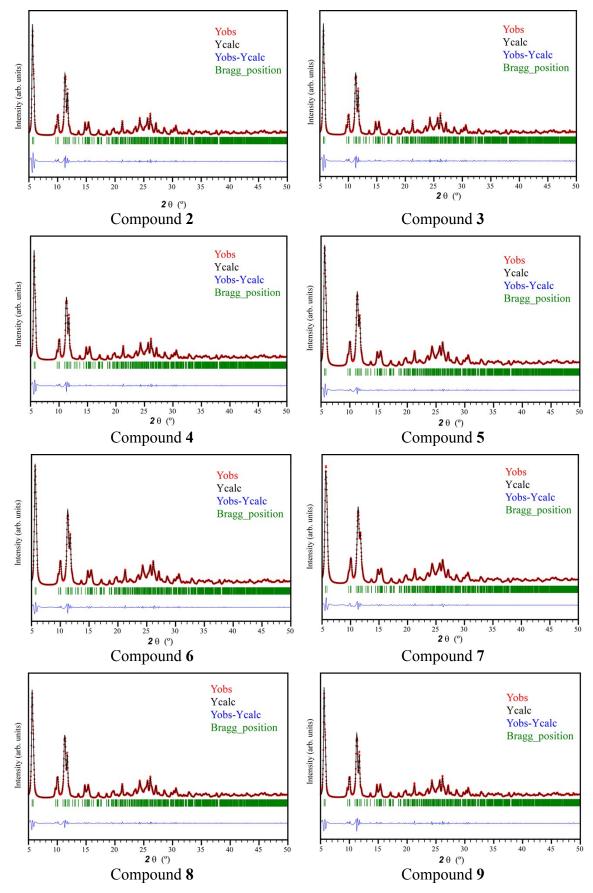


Figure S14. Comparison of experimental diffactogram and the theoretical one with their full profile pattern-matching analyses.

S16. Photoluminescence measurements.

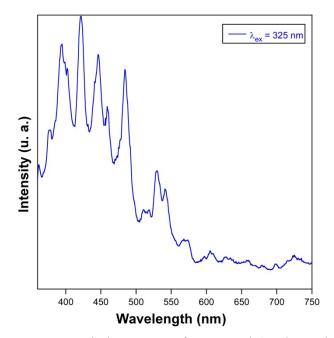


Figure S15. Room temperature emission spectra of compound 6 under excitation at 325 nm.

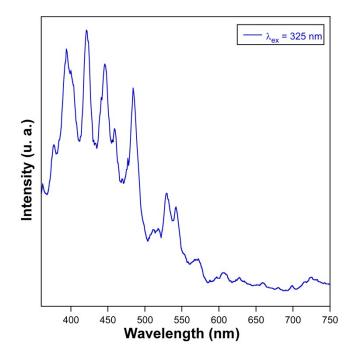


Figure S16. Room temperature emission spectra of compound 5 under excitation at 325 nm.

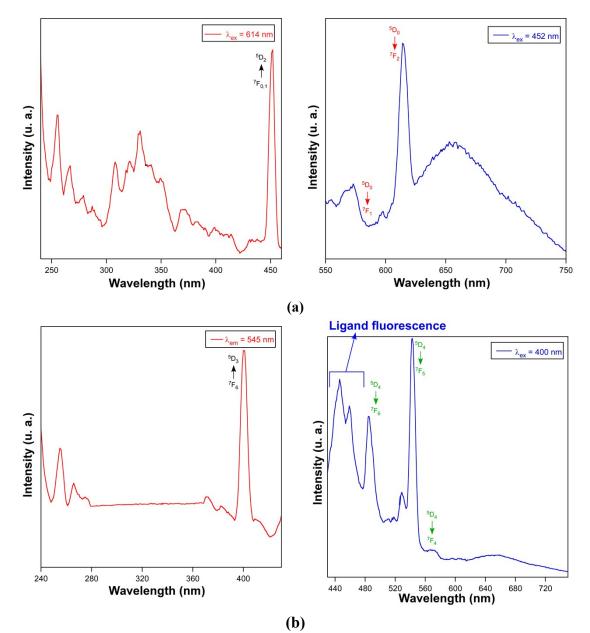
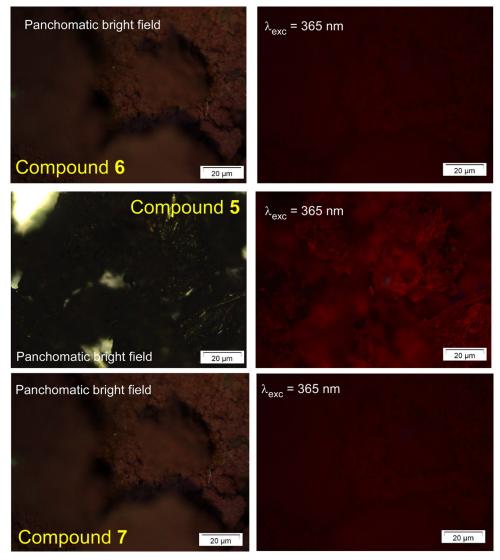



Figure S17. Room temperature excitation (red line) and emission (blue line) spectra of compounds (a) 5 and (b) 7.

Figure S18. Micro-PL images taken on crystals or polycrystalline samples of compounds 5–7 under panchromatic field and UV irradiation ($\lambda_{exc} = 365$ nm).

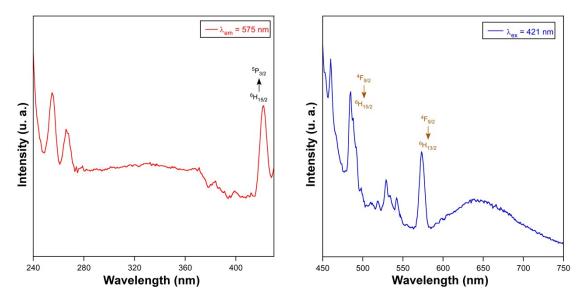
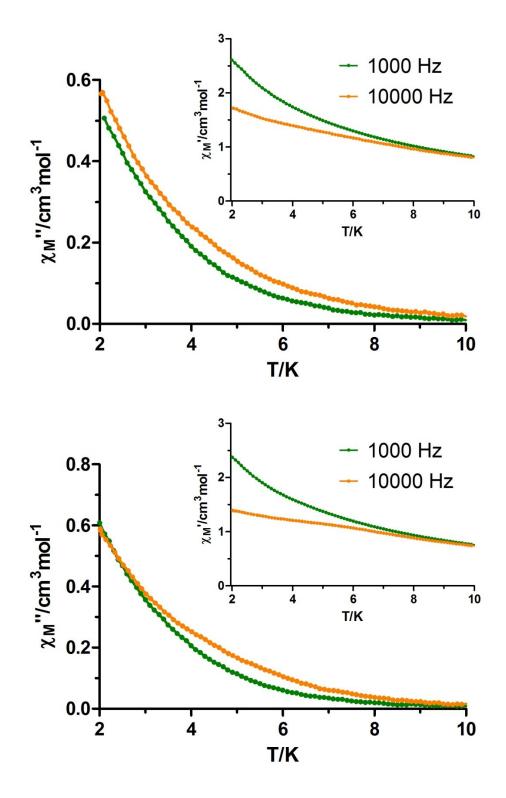
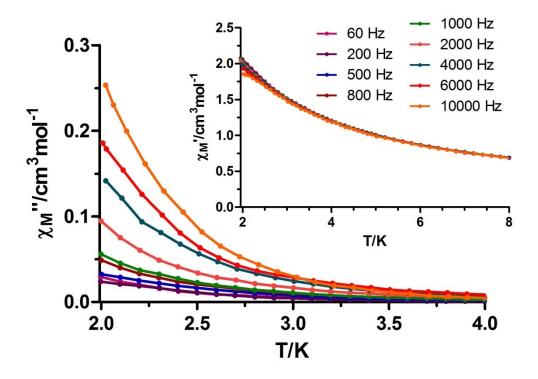




Figure S19. Room temperature excitation (red) and emission (blue) spectra of compound 8.

S17. Ac susceptibility measurements.

Figure S20. Temperature dependence of out-of-phase components of the *ac* susceptibility under 1000 Oe *dc* field for the diluted complexes (Dy:Y of 1:3) (top) and (Dy:Y of 1:6) (bottom). Inset: temperature dependence of in-phase components of the *ac* susceptibility under 1000 Oe *dc* field for the diluted complexes (Dy:Y of 1:3) (top) and (Dy:Y of 1:6) (bottom).

Figure S21. Temperature dependence of in-phase (inset) and out-of-phase components of the *ac* susceptibility under 1000 Oe *dc* field for the Er(III) complex.

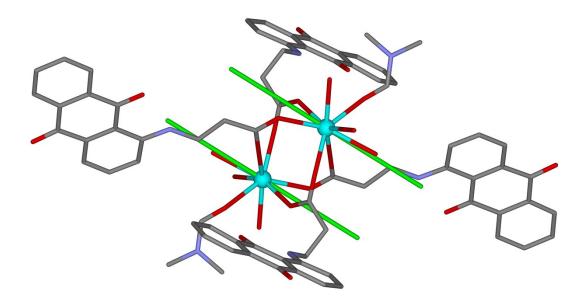


Figure S22. Orientation of the magnetic moment (Green line) for compound 8.

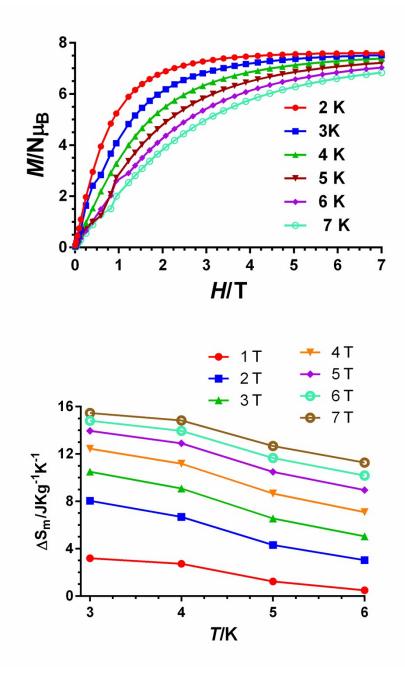


Figure S23.- (Top) The field dependence of the magnetization plots for 1 between 2 and 7 K and (bottom) magnetic entropy changes ($-\Delta S_m$) calculated from the experimental magnetization data from 1 to 7 T and temperatures from 3 to 6 K (points). Solid lines are only a guide for the eye.

REFERENCES

- 1 D. H. Wu; A. D. Chen; C. S. Johnson, J. Magn. Reson. Ser., A 1995, 115, 260.
- 2 DiffAtOnce® is a registered program developed by I. Fernández and F. M. Arrabal-Campos in the University of Almería (Spain). 2013.
- 3 H. J. V. Tyrrell; K. R. Harris, *Diffusion in Liquids*, Butterworths, London, 1984.
- 4 I. Oyarzabal, B. Fernández, J. Cepeda, S. Gómez-Ruiz, A. J. Calahorro, J. M. Seco, A. Rodríguez-Diéguez, *CrystEngComm*, 2016, **18**, 3055.