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Characterization

Nuclear magnetic resonance (NMR) measurements were performed on a Bruker 

ARX400 MHz spectrometer using with CDCl3 as solvent, tetramethylsilane (TMS) as 

the internal standard at room temperature. Fourier-transform infrared (FT-IR) 

spectroscopy was performed with a Nicolet 6700 instrument over the range of 4000-

600 cm-1 to determine the functionalization of the samples. Thermogravimetric 

analysis (TGA) was performed on a TA SDT 2960 instrument at a heating rate of 20 

°C min-1 in a nitrogen atmosphere. X-ray photoelectron spectroscopy (XPS) was 

recorded with an Axis Ultra spectrometer (Kratos Analytical, UK) with a 

monochromated Al Kα source. Survey scans over a binding energy range of 0-1150 

eV were taken for each sample with a constant detector pass energy range of 160 eV, 

followed by high-resolution XPS measurement (pass energy 40 eV) for quantitative 

measurements of binding energy and atomic concentration. The morphology of the 

composites was performed by scanning electron microscopy (SEM, JSM-6390). 

Liquid crystalline texture of the polymers was examined under POM (Leica DM-LM-

P) equipped with a Mettler-Toledo hot stage (FP82HT). Transmission electron 

microscopy (TEM) images were obtained from a JEOL JEM-2100 instrument 

operated at an accelerating voltage at 200 kV. The samples were prepared by 

dropping the sample solutions onto carbon-coated copper grids and air-drying before 

measurement. Frequency-dependent dielectric constant and dielectric loss were 

measured using an Agilent 4294A LCR meter with a frequency range from 100 Hz to 

10 MHz. Electric displacement-electric field loops was measured by a Precision 

Premier II ferroelectric polarization tester (Radiant, Inc.).

Surface functionalization of BaTiO3 nanoparticles

The experimental details of modified BaTiO3 nanoparticles were described as 

followed: (1) The first step was hydroxylation functionalization of BaTiO3 

nanoparticles. 4 g of BaTiO3 nanoparticles was added into a 100 ml aqueous solution 

of H2O2 (30 wt%) in a round-bottomed flask. The mixture was sonicated for 30 min 

and was then refluxed at 105 °C for 6 h. The nanoparticles were recovered by 

centrifugation at 4000 rpm for 10 min, and then washed with deionized water three 

times followed by dried under vacuum at 80 °C for 24 h to obtain the surface 

hydroxylated BT nanoparticles (BT-OH). (2) The second step was amino 



functionalization of BT-OH. 3.5 g BT-OH were poured into 100 ml tetrahydrofuran 

(THF) in a round-bottomed flask and sonicated for 30 min. After 3 g γ-APS was 

added, the mixture was heated to 80 °C for 24 h under N2 atmosphere. The 

nanoparticles were recovered by centrifugation at 4000 rpm for 10 min, and washed 

with THF three times and followed by dried under vacuum at 80 °C for 24 h to gain 

the amino-functionalized BT nanoparticles (BT-NH2). (3) The third step was that the 

activation of a RAFT agent (CPDB-NHS) anchored the surface of BT nanoparticles. 

An amount of 3.3 g of BT-NH2 was dispersed in THF and sonicated for 0.5 h, and 

then the mixture was added dropwise to the THF solution of CPDB-NHS at room 

temperature with vigorous stirring. After reaction of 12 h, the BT-CPDB was 

collected by centrifugation and washed with THF three times. Then the BT-CPDB 

was dried at 60°C for 24 h. (4) Finally, the three different liquid crystalline polymers 

(P-3F, P-5F and P-7F) were introduced onto the surface of BT nanoparticles via 

RAFT surface-initiated polymerization, denoted as P-3F@BaTiO3, P-5F@BaTiO3 

and P-7F@BaTiO3. The typical process were as follows: BT-CPDB (1 g), monomer 

M-3F (1 g, 1.8 mmol), AIBN (2.6 mg, 0.015mmol), and chlorobenzene (7.5 g) were 

mixed into a glass test tube. The glass tube was purged with nitrogen and subjected to 

four freeze-thaw cycles to remove the dissolved oxygen. After that, the glass tube was 

end-capping by alcohol blast burner and then immersed into an oil bath at 80 °C with 

magnetic stirring. After reaction for 18 h, the glass tube was broken with an iron bar 

when rapidly cooling to 0 °C with the ice bath. The solution was diluted with THF 

and centrifuged. The procedure recycled for three times to obtain the P-3F@BaTiO3. 

The synthesized step of the P-5F@BaTiO3 and P-7F@BaTiO3 was similar with P-

3F@BaTiO3.



Fig. S1. 1H NMR spectra of the monomers (a) M-3F, (b) M-5F, and (c)M-7F in 

CDCl3.



Fig. S2. Frequency dependence of conductivity of the P-nF@BT/P(VDF-TrFE-CTFE) 

nanocomposite films with (a) P-3F@BaTiO3, (b) P-5F@BaTiO3, and (c) P-

7F@BaTiO3.


