Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2018

Supporting Information

Challenges in Cyclometalation: Steric Effects Leading to Competing Pathways and η^1, η^2 -Cyclometalated Iridium(III) Complexes

Houguang Jeremy Chen, Ronald Hong Xiang Teo, Jonathan Wong, Yongxin Li, Sumod A. Pullarkat, and Pak-Hing Leung*

Division of Chemistry & Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore

Email: pakhing@ntu.edu.sg

TABLE OF CONTENTS

А.	General Considerations	
B.	Experimental	
	B1The Iridation Reaction of (R) - N,N -Dimethyl-1-NapB2The Iridation Reaction of (R) - N,N -Dimethyl-1-PheB3The Cycloiridation of N,N -Dimethyl-1-NaphthylmB4The Iridation Reaction of Deuterated d_1 -rac- N,N -I d_1 -rac-L1	phthylethylamine (<i>R</i>)- L1 S4 enylethylamine (<i>R</i>)- L2 S7 nethylamine L3 S8 Dimethyl-1-Naphthylethylamine S9
C.	NMR Spectroscopy Data	
	Cycloiridated Complex (R_C, R_N, S_{Ir}) - 1 Deuterated Cycloiridated Complex d_1 - (R_C, R_N, S_{Ir}) - 1 1-Acetonaphtone 2 Coordinated Dimethylamine Iridium(III) Complex 3 Cycloiridated Complex <i>rac</i> - 4 Cycloiridated Complex <i>rac</i> - 5 1-Ethylnaphthalene 6 Deuterated d_1 -1-Ethylnaphthalene 6 Acetophenone 7 Cycloiridated Complex <i>rac</i> - 8 Cycloiridated Complex <i>rac</i> - 9	S11 S12 S14 S14 S15 S16 S17 S18 S19 S21 S22 S23
D.	X-Ray Crystallographic Data	
	Cycloiridated Complex (<i>R</i> _C , <i>R</i> _N , <i>S</i> _{Ir})- 1 Cycloiridated Complex <i>rac</i> - 5 Cycloiridated Complex <i>rac</i> - 9	

A GENERAL CONSIDERATIONS

Reactions involving air- or moisture-sensitive compounds were carried out by means of conventional Schlenk techniques under a positive pressure of nitrogen gas. Unless stated otherwise, chemicals and solvents were used as received from commercial vendors without further purification. When required, anhydrous solvents were freshly distilled and dried according to standard procedures prior to use.

Nuclear magnetic resonance (NMR) spectroscopy were recorded at Nanyang Technological University Division of Chemistry and Biological Chemistry Central Facilities Laboratory on the Bruker Avance III 400 (BBFO 400) spectrometer at 400 MHz for ¹H NMR and 100 MHz for ¹³C NMR. Chemical shifts (δ) are quoted in ppm, and referenced to chemical shifts of residual solvent peaks for ¹H and ¹³C NMR.

High resolution mass spectrometry *via* electrospray ionization (ESI) was performed on the Waters Q-Tof Premier spectrometer. Unless stated otherwise, acetonitrile was used as the solvent for the dissolution of compounds.

Elemental analysis was performed on the EuroVector Euro EA elemental analyzer at Nanyang Technological University Division of Chemistry and Biological Chemistry Central Facilities Laboratory.

Optical rotation studies were measured on the Jasco P-1030 polarimeter in a 0.1 dm polarimetry cell at the specified temperature using the D-line of sodium (589 nm) as the source of light. Unless stated otherwise, dichloromethane was used as the solvent for the dissolution of compounds.

B EXPERIMENTAL

B1 The Iridation Reaction of (*R*)-*N*,*N*-Dimethyl-1-Naphthylethylamine (*R*)-L1

 $[IrCp*Cl_2]_2$ (100 mg, 0.125 mmol) and NaOAc (41 mg, 0.50 mmol) were added to a stirring solution of (*R*)-*N*,*N*-dimethyl-1-naphthylethylamine (*R*)-**L1** (50 mg, 0.25 mmol) in 1,2-dichloroethane (5 mL). The reaction mixture was then reflux for 48 h. The crude reaction mixture was evaporated to dryness and purified directly by column chromatography on silica gel (*refer to products on eluent system for column chromatography*).

(R_C, R_N, S_{Ir}) -(1, 2, 3, 4, 5-Pentamethylcyclopentadienyl){ $(\kappa^2 - C, N)$ -1-[1-(N-methylamino)ethyl]naphthyl}iridium(III) chloride (R_C, R_N, S_{Ir})-1

Eluent System (Chromatography): CH₂Cl₂; Yield: 5.5 mg (4%); $[\alpha]_D$ (22 °C, *c* 0.5) = -102.1° ; ¹H NMR (400 MHz, CD₂Cl₂): δ 1.24 (d, ³*J*_{HH} = 6.5 Hz, 3H, ArCH(CH₃)), 1.67 (s, 15H, Cp(CH₃)), 3.02 (d, ³*J*_{HH} = 6.4 Hz, 3H, NH(CH₃)), 4.69 (dq, ³*J*_{HH} = 4.2 Hz and 6.4 Hz, 1H, ArCH(CH₃)), 5.02 (br s, 1H, NH(CH₃)), 7.20-7.74 (m, 6H, Ar*H*); ¹³C NMR (100 MHz, CD₂Cl₂): δ 9.36 (C₅(CH₃)₅), 17.39 (ArCH(CH₃)N), 39.57 (NCH₃), 66.89 (ArCH(CH₃)N), 87.35 (*C*₅(CH₃)₅), 122.66 (aromatic carbon), 123.41 (aromatic carbon), 125.41 (aromatic carbon), 126.05 (aromatic carbon), 127.92 (aromatic carbon), 128.38 (aromatic carbon), 131.07 (aromatic carbon), 136.07 (aromatic carbon), 144.65 (aromatic carbon), 153.10 (aromatic carbon); HRMS (ESI) *m*/*z* [*negative mode*] calcd for C₂₃H₂₉ClIrN 547.1618, found 547.1619; Anal. calcd for C₂₃H₂₉ClIrN: C, 50.49; H, 5.34; N, 2.56. Found: C, 50.02; H, 5.56; N, 2.31.

Eluent System (Chromatography): *n*-hexane:CH₂Cl₂ (2:1); Yield: 20.4 mg (48%; *two-day reaction*); ¹H NMR (400 MHz, CDCl₃): δ 2.75 (s, 3H, Ar(C=O)CH₃), 7.48-8.74 (m, 7H, ArH); ¹³C NMR (100 MHz, CDCl₃): δ 29.93 (C(=O)CH₃), 124.29 (aromatic carbon), 126.00 (aromatic carbon), 126.41 (aromatic carbon), 128.01 (aromatic carbon), 128.37 (aromatic carbon), 128.58 (aromatic carbon), 130.15 (aromatic carbon), 132.97 (aromatic carbon), 133.98 (aromatic carbon), 135.52 (aromatic carbon), 201.76 (*C*(=O)CH₃); HRMS (ESI) *m*/*z* [(M+H)]⁺ calcd for C₁₂H₁₁O 171.0810, found 170.0814; Anal. calcd for C₁₂H₁₀O: C, 84.68; H, 5.92. Found: C, 84.93; H, 5.59.

Dichloro(dimethylamino)-1,2,3,4,5-pentamethylcyclopentadienyl iridium(III) 3

Eluent System (Chromatography): CH₂Cl₂:EtOAc (1:1); Yield: 24.4 mg (22%); ¹H NMR (400 MHz, CDCl₃): δ 1.64 (s, 15H, Cp(CH₃)), 2.89 (d, ³J_{HH} = 5.4 Hz, 6H, HN(CH₃)₂), 3.90 (br s, 1H, *H*N(CH₃)₂); ¹³C NMR (75 MHz, CDCl₃): δ 9.20 (C₅(CH₃)₅), 43.94 (NCH₃), 84.76 (C₅(CH₃)₅); HRMS (ESI) *m*/*z* [*negative mode*] calcd for C₁₂H₂₂ClIrN 443.0759, found 443.0747.

(1,2,3,4,5-Pentamethylcyclopentadienyl){ $(\kappa^2$ -C,N)-1-[1-(N-methylimino)ethyl]naphthyl}irid-ium(III) chloride rac-4

Eluent System (Chromatography): CH₂Cl₂:EtOAc (10:1); Yield: 2.7 mg (2%); ¹H NMR (400 MHz, CDCl₃): δ 1.73 (s, 15H, Cp(CH₃)), 2.98 (s, 3H, C(=NMe) (CH₃)Ar)), 3.98 (s, 3H, NCH₃), 7.32-8.22 (m, 6H, Ar*H*); ¹³C NMR (100 MHz, CDCl₃): δ 9.16 (C₅(CH₃)₅), 20.65 (C(=N)CH₃), 45.68 (NCH₃)), 89.34 (C₅(CH₃)₅), 122.11 (aromatic carbon), 122.46 (aromatic carbon), 125.92 (aromatic carbon), 129.57 (aromatic carbon), 130.95 (aromatic carbon), 131.17 (aromatic carbon), 132.80 (aromatic carbon), 134.49 (aromatic carbon), 140.83 (aromatic carbon), 174.92 ((C(=N)CH₃)), 180.39 (aromatic carbon); HRMS (ESI) *m*/*z* [*negative mode*] calcd for C₂₃H₂₇ClIrN 545.1461, found 545.1451; Anal. Calcd for C₂₃H₂₇ClIrN: C, 50.68; H, 4.99; N, 2.57. Found: C, 50.50; H, 5.07; N, 2.73.

(1,2,3,4,5-Pentamethylcyclopentadienyl){ $(\kappa^2$ -C,[η^2 -ethylene])-1-naphthylethene}iridium(III) chloride rac-5

Eluent System (Chromatography): CH₂Cl₂; Yield: 2.6 mg (2%); ¹H NMR (400 MHz, CDCl₃): δ 1.63 (s, 15H, Cp(CH₃)), 4.04 (d, ³J_{HH} = 11.3 Hz, 1H, ArCHCHH), 4.10 (d, ³J_{HH} = 8.8 Hz, 1H, ArCHCHH), 5.32 (dd, ³J_{HH} = 8.9 Hz, ³J_{HH} = 11.2 Hz, ArCHCH₂), 7.02-7.49 (m, 6H, ArH) ¹³C NMR (100 MHz, CDCl₃): δ 8.29 (C₅(CH₃)₅), 56.16 (ArCH=CH₂), 80.82 (ArCH=CH₂), 99.36 (C₅(CH₃)₅), 121.11 (aromatic carbon), 121.43 (aromatic carbon), 124.84 (aromatic carbon), 125.38 (aromatic carbon), 127.98 (aromatic carbon), 131.70 (aromatic carbon), 133.83 (aromatic carbon), 143.47 (aromatic carbon), 146.03 (aromatic carbon), 148.17 (aromatic carbon); HRMS (ESI) *m*/*z* [*negative mode*] calcd for C₂₂H₂₄CIIr 516.1196, found 516.1188; Anal. calcd for C₂₂H₂₄CIIr: C, 51.20; H, 4.69. Found: C, 51.45; H, 4.11.

1-Ethylnaphthalene 6

Eluent System (Chromatography): *n*-hexane; Yield: 0.3 mg (<1%); ¹H NMR (400 MHz, CDCl₃): δ 1.40 (t, ³*J*_{HH} = 7.5 Hz, 3H, ArCH₂CH₃), 3.13 (q, ³*J*_{HH} = 7.5 Hz, 2H, ArCH₂CH₃), 7.34-8.08 (m, 7H, Ar*H*); ¹³C NMR (100 MHz, CDCl₃): δ 15.03 (ArCH₂CH₃), 25.88 (ArCH₂CH₃), 123.72 (aromatic carbon), 124.83 (aromatic carbon), 125.37 (aromatic carbon), 125.65 (aromatic carbon), 126.37 (aromatic carbon), 128.73 (aromatic carbon), 131.77 (aromatic carbon), 133.81 (aromatic carbon), 140.27 (aromatic carbon); HRMS (ESI) *m*/*z* [(M+H)]⁺ calcd for C₁₂H₁₃ 157.1017, found 157.1017; Anal. calcd for C₁₂H₁₂: C, 92.26; H, 7.74. Found: C, 92.57; H, 7.50.

B2 The Iridation Reaction of (*R*)-*N*,*N*-Dimethyl-1-Phenylethylamine (*R*)-L2

 $[IrCp*Cl_2]_2$ (100 mg, 0.125 mmol) and NaOAc (41 mg, 0.50 mmol) were added to a stirring solution of (*R*)-*N*,*N*-dimethyl-1-phenylethylamine (*R*)-**L2** (50 mg, 0.25 mmol) in 1,2-dichloroethane (5 mL). The reaction mixture was then reflux for 2 days. The crude reaction mixture was evaporated to dryness and purified directly by column chromatography on silica gel with hexane/ethyl acetate as the eluent.

Dichloro(dimethylamino)-1,2,3,4,5-pentamethylcyclopentadienyl iridium(III) 3

Yield: 17% (refer to Page S5 for characterization).

Acetophenone 7

Yield: 12.3 mg (41%); ¹H NMR (400 MHz, CDCl₃): δ 2.61 (s, 3H, CH₃), 7.44-7.97 (m, 5H, ArH); ¹³C NMR (100 MHz, CDCl₃): δ 26.57 (C(=O)CH₃), 128.27 (aromatic carbon), 128.54 (aromatic carbon), 133.07 (aromatic carbon), 137.12 (aromatic carbon), 198.12 (C(=O)CH₃); HRMS (ESI) *m*/*z* [(M+H)]⁺ calcd for C₈H₈O 121.0653, found 121.0649; ; Anal. calcd for C₈H₈O: C, 79.97; H, 6.71. Found: C, 80.13; H, 6.78.

(1,2,3,4,5-Pentamethylcyclopentadienyl){ $(\kappa^2$ -C,N)-1-[1-(N-methylimino)ethyl]phenyl}iridium (III) chloride rac-8

Yield: 16.1 mg (13%); ¹H NMR (400 MHz, CDCl₃): δ 1.67 (s, 15H, Cp(CH₃)), 2.51 (s, 3H, Ar(CN)CH₃), 3.84 (s, 3H, N(CH₃)), 6.95-7.76 (m, 4H, Ar*H*); ¹³C NMR (75 MHz, CDCl₃): δ 8.99 (C₅(CH₃)₅), 14.65 (C(=N)CH₃), 45.09 (NCH₃), 88.67 (C₅(CH₃)₅), 121.07 (aromatic carbon), 127.34 (aromatic carbon), 130.77 (aromatic carbon), 135.10 (aromatic carbon), 148.18 (aromatic carbon), 167.89 (aromatic carbon), 180.04 (ArC(=N)CH₃); HRMS (ESI) *m*/*z* [*negative mode*] calcd for C₁₉H₂₅CIIrN 495.1305, found 495.1292; Anal. calcd for C₁₉H₂₅CIIrN: C, 46.10; H, 5.09; N, 2.83. Found: C, 45.62; H, 5.38; N, 2.83.

B3 The Cycloiridation of *N*,*N*-Dimethyl-1-Naphthylmethylamine L3

 $[IrCp*Cl_2]_2$ (40 mg, 0.05 mmol) and NaOAc (10 mg, 0.12 mmol) were added to a stirring solution of *N*,*N*-dimethyl-1-naphthylmethylamine **L3** (0.10 mmol) in dichloromethane (3 mL). The reaction mixture was then stirred at room temperature for 24 h. The crude reaction mixture was evaporated to dryness and purified by column chromatography on silica gel with dichloromethane as the eluent.

(1,2,3,4,5-Pentamethylcyclopentadienyl){ $(\kappa^2$ -C,N)-(N,N-dimethylamino)methylnaphthyl}irid-ium(III) chloride rac-9

Yield: 40 mg (73%); ¹H NMR (400 MHz, CD₂Cl₂): δ 1.65 (s, 15H, Cp(CH₃)), 2.96 (s, 3H, ArCH₂NMe(CH₃)), 3.11 (s, 3H, ArCH₂N(CH₃)Me), 3.99 (d, ²J_{HH} = 13.1 Hz, 1H, ArCHHNMe₂), 4.48 (d, ²J_{HH} = 13.0 Hz, 1H, ArCHHNMe₂), 7.24-7.84 (m, 6H, ArH); ¹³C NMR (100 MHz, CD₂Cl₂): δ 9.11 (C₅(CH₃)₅), 51.83 (NCH₃), 57.90 (NCH₃), 70.92 (ArCH₂N), 87.85 (C₅(CH₃)₅), 122.56 (aromatic carbon), 123.18 (aromatic carbon), 124.74 (aromatic carbon), 125.06 (aromatic carbon), 128.09 (aromatic carbon), 129.82 (aromatic carbon), 130.72 (aromatic carbon), 134.48 (aromatic carbon), 141.10 (aromatic carbon), 150.86 (aromatic carbon); HRMS (ESI) *m/z* [*negative mode*] calcd for C₂₃H₂₉ClIrN 547.1618, found 547.1608; Anal. calcd for C₂₃H₂₉ClIrN: C, 50.49; H, 5.34; N, 2.56. Found: C, 50.52; H, 5.15; N, 2.59.

B4 The Iridation Reaction of Deuterated *d*₁-*rac*-*N*,*N*-Dimethyl-1-Naphthylethylamine *d*₁-*rac*-L1

[IrCp*Cl₂]₂ (100 mg, 0.125 mmol) and NaOAc (41 mg, 0.50 mmol) were added to a stirring solution of d_1 -rac-dimethyl-1-naphthylethylamine d_1 -(*R*)-L1 (50 mg, 0.25 mmol) in 1,2-dichloroethane (5 mL). The reaction mixture was then reflux for 48 h. The crude reaction mixture was evaporated to dryness and purified directly by column chromatography on silica gel.

d_1 -rac-(1,2,3,4,5-Pentamethylcyclopentadienyl){ $(\kappa^2$ -C,N)-1-[1-(N-methylamino)-ethyl]naphth-yl}iridium(III) chloride d_1 -rac-1

¹H NMR (400 MHz, CD₂Cl₂): δ 1.25 (s, 3H, ArCD(CH₃)), 1.68 (s, 15H, Cp(CH₃)), 3.02 (d, ³*J*_{HH} = 6.3 Hz, 3H, NH(CH₃)), 5.03 (br s, 1H, NH(CH₃)), 7.21-7.75 (m, 6H, Ar*H*); ²H NMR (400 MHz, CD₂Cl₂): δ 4.72 (ArCD(CH₃)); ¹³C NMR (100 MHz, CD₂Cl₂): δ 9.37 (C₅(CH₃)₅), 17.28 (ArCD(CH₃)N), 39.54 (NCH₃), 66.51 (¹*J*_{CD} = 20.5 Hz, ArCD(CH₃)N), 87.35 (*C*₅(CH₃)₅), 122.66 (aromatic carbon), 123.41 (aromatic carbon), 125.41 (aromatic carbon), 126.05 (aromatic carbon), 127.95 (aromatic carbon), 128.39 (aromatic carbon), 131.09 (aromatic carbon), 136.09 (aromatic carbon), 144.64 (aromatic carbon), 153.13 (aromatic carbon); HRMS (ESI) *m*/*z* [*negative mode*] calcd for C₂₃H₂₈DCIIrN 548.1681, found 548.1675.

1-Acetonaphthone 2

Refer to Page S5 for characterization data.

Dichloro(dimethylamino)-1,2,3,4,5-pentamethylcyclopentadienyl iridium(III) 3

Refer to Page S5 for characterization data.

(1,2,3,4,5-Pentamethylcyclopentadienyl){ $(\kappa^2$ -C,N)-1-[1-(N-methylimino)ethyl]naphthyl}irid-ium(III) chloride rac-4

Refer to Page S5 for characterization data.

(1,2,3,4,5-Pentamethylcyclopentadienyl){ $(\kappa^2$ -C,[η^2 -ethylene])-1-naphthylethene}iridium(III) chloride rac-5

Refer to Page S6 for characterization data.

d₁-1-Ethylnaphthalene 6a and 6b

R¹=H, R²=D d_1 -6a R¹=D, R²=H d_1 -6b

¹H NMR (400 MHz, CDCl₃): δ 1.40 (t, ³*J*_{HH} = 7.5 Hz, 2.86H, ArCH₂CH₃), 3.13 (q, ³*J*_{HH} = 7.5 Hz, 1.62H, ArCH₂CH₃), 7.34-8.08 (m, 7H, Ar*H*); ²H NMR (400 MHz, CDCl₃): δ 1.41 (ArCH₂CH₂*D*), 3.13 (ArCH*D*CH₃); ¹³C NMR (100 MHz, CDCl₃): δ 14.73 (¹*J*_{CD} = 20.6 Hz, ArCH₂CH₂D) 15.01 (ArCH₂CH₃), 25.55 (¹*J*_{CD} = 19.3 Hz, ArCHDCH₃), 25.87 (ArCH₂CH₃), 123.72 (aromatic carbon), 124.83 (aromatic carbon), 125.36 (aromatic carbon), 125.65 (aromatic carbon), 131.78 (aromatic carbon), 133.83 (aromatic carbon), 140.27 (aromatic carbon); HRMS (ESI) *m*/*z* [(M–H)]⁺ calcd for C₁₂H₁₁D 156.0924, found 156.0919.

C NMR SPECTROSCOPY DATA

$(1,2,3,4,5-Pentamethylcyclopentadienyl) \{(\kappa^2-C,N)-1-[1-(N-methylamino)ethyl]naphthyl\}-iridium(III) chloride$

 d_1 -rac-(1,2,3,4,5-Pentamethylcyclopentadienyl){(κ^2 -C,N)-1-[1-(N-methylamino)ethyl]naphthyl}iridium(III) chloride

Note: The spectrum has been enlarged for clarity (\bullet (5.32 *ppm*): *CD*₂*Cl*₂).

¹³C NMR spectrum

(100 MHz, CD₂Cl₂)

1-Acetonaphthone

Dichloro(dimethylamino)-1,2,3,4,5-pentamethylcyclopentadienyl iridium(III)

 $(1,2,3,4,5-Pentamethylcyclopentadienyl) \{(\kappa^2-C,N)-1-[1-(N-methylimino)ethyl]naphthyl \} iridium(III) chloride$

 $(1,2,3,4,5-Pentamethylcyclopentadienyl) \{(\kappa^2-C,[\eta^2-ethylene])-1-naphthylethene \} iridium(III) chloride$

1-Ethylnaphthalene

*d*₁-1-Ethylnaphthalene Mixture

Note: The spectrum has been enlarged for clarity (\bullet (7.26 *ppm*): *CDCl*₃).

(100 MHz, CDCl₃)

¹³C NMR spectrum

Acetophenone

S21

 $(1,2,3,4,5-Pentamethylcyclopentadienyl) \{(\kappa^2-C,N)-1-[1-(N-methylimino)ethyl]phenyl\}iridium(III) chloride$

 $(1,2,3,4,5-Pentamethylcyclopentadienyl) \{(\kappa^2-C,N)-(N,N-dimethylamino)methylnaphthyl \} iridium(III) chloride$

D X-RAY CRYSTALLOGRAPHIC DATA

 (R_C, R_N, S_{Ir}) -(1, 2, 3, 4, 5-Pentamethylcyclopentadienyl){ $(\kappa^2 - C, N)$ -1-[1-(N-methylamino)ethyl]naphthyl}iridium(III) chloride

Molecular structure of cycloiridated complex (R_C , R_N , S_{Ir})-1 with thermal ellipsoids shown at 50% probability. Hydrogen atoms except H(C11) and H(N1) are omitted for clarity. Selected bond lengths and angles: N–Ir (2.134(5) Å), C₁–Ir (2.035(7) Å), Cl–Ir (2.4339(18) Å), N–Ir–C₁ (76.8(2)°), N–Ir–Cl (81.94(17)°), C₁–Ir–Cl (86.20(19)°).

Depository Number			
CCDC Number	1815863		
Crystal Data			
Chemical Formula	C ₂₃ H ₂₉ ClIrN		
Formula Weight (FW), g mol ⁻¹	547.12		
Crystal System	orthorhombic		
Space Group	P 21 21 21		
Temperature (K)	103(2)		
a,b,c (Å)	7.8309(9), 18.449(2), 28.858(3)		
<i>α,β,γ</i> (°)	90, 90, 90		
$V(Å^3)$	4169.2(8)		
Ζ	8		
F(000)	2144		
Radiation Type (Wavelength)	Mo (0.71073 Å)		
Absorption Coefficient (mm ⁻¹)	6.539		
Crystal Size (mm)	$0.260 \times 0.340 \times 0.400$		

Data Collection	
Theta Range for Data Collection	5.10° to 31.08°
Index Ranges	$-8 \le h \le 11, -26 \le k \le 22, -37 \le l \le 41$
Reflections Collected	35193
Independent Reflections	13198 [$R(int) = 0.0516$]
T_{min}, T_{max}	0.1800, 0.2810
Refinement Definement Method	Full motive least sevenes on \mathbf{F}^2
Refinement Method	Full-matrix least-squares on F ⁻
Refinement Program	SHELXL-2016/6 (Sheldrick, 2016)
Function Minimized	$\Sigma \mathrm{w}(\mathrm{F_o}^2 - \mathrm{F_c}^2)^2$
No. of Reflections	13198
No. of Restraints	595
No. of Parameters	571
Goodness-of-Fit on F ²	0.985
Δ / σ_{max}	0.003
Final R Indices	11509 data; I>2σ(I)
	(R1 = 0.0378, wR2 = 0.0623)
	all data
	(R1 = 0.0474, wR2 = 0.0646)
Weighting Scheme	$w = 1 / [\sigma^2(F_o^2) + (0.0117P)^2],$
	where $P = (F_o^2 + 2F_c^2) / 3$
Absolute Structure Parameter	0.021(8)
r_{max} , r_{min} (e Å ⁻³)	2.375, -1.503
R.M.S. Deviation from Mean ($e Å^{-3}$)	0.166

 $(1,2,3,4,5-Pentamethylcyclopentadienyl) \{(\kappa^2-C,[\eta^2-ethylene])-1-naphthylethene\} iridium(III) chloride$

Molecular structure of cycloiridated complex *rac*-**5** with thermal ellipsoids shown at 50% probability. Hydrogen atoms are omitted for clarity. Selected bond lengths and angles: Ir–C₁ (2.050(6) Å), Ir–C₁₁ (2.171(7) Å), Ir–C₁₂ (2.131(7) Å), Ir–Cl (2.4057(16) Å), C₁₁–C₁₂ (1.407(10) Å), C₁–Ir–Cl (83.66(18)°), C₁₁–Ir–C₁₂ (38.2(3)°), C₇–C₁₁–C₁₂ (122.1(6)°).

Depository Number				
CCDC Number	1830655			
Crystal Data				
Chemical Formula	C ₂₂ H ₂₄ ClIr			
Formula Weight (FW), g mol ⁻¹	516.06			
Crystal System	orthorhombic			
Space Group	P n a 2 1			
Temperature (K)	100(2)			
<i>a,b,c</i> (Å)	17.0801(5), 7.2442(2), 14.5460(5)			
α,β,γ (°)	90, 90, 90			
$V(Å^3)$	1799.80(10)			
Ζ	4			
F(000)	1000			

Crystal Data (con't)	
Radiation Type (Wavelength)	Mo (0.71073 Å)
Absorption Coefficient (mm ⁻¹)	7.567
Crystal Size (mm)	$0.060 \times 0.080 \times 0.100$
Data Collection	
Theta Range for Data Collection	2.38° to 34.00°
Index Ranges	$-26 \le h \le 26, -11 \le k \le 11, -22 \le l \le 22$
Reflections Collected	26362
Independent Reflections	7323 [$\mathbf{R}(int) = 0.0562$]
T _{min} , T _{max}	0.5180, 0.6600
Refinement	
Refinement Method	Full-matrix least-squares on F ²
Refinement Program	SHELXL-2016/6 (Sheldrick, 2016)
Function Minimized	$\Sigma \mathrm{w} (\mathrm{F_o}^2 - \mathrm{F_c}^2)^2$
No. of Reflections	7323
No. of Restraints	1
No. of Parameters	223
Goodness-of-Fit on F ²	1.069
Final R Indices	5966 data; $I > 2\sigma(I)$
	(R1 = 0.0328, WR2 = 0.0558)
	all data
	(R1 = 0.0490, wR2 = 0.0604)
Weighting Scheme	$w = 1 / [\sigma^2(F_o^2) + 1.6661P],$
	where $P = (F_o^2 + 2F_c^2) / 3$
$r_{\text{max}}, r_{\text{min}} (e \text{A}^{-3})$	1.934, -1.385
R.M.S. Deviation from Mean ($e Å^{-3}$)	0.178

 $(1,2,3,4,5-Pentamethylcyclopentadienyl) \{(\kappa^2-C,N)-(N,N-dimethylamino)methylnaphthyl\} iridium(III) chloride$

Molecular structure of cycloiridated complex *rac-9* with thermal ellipsoids shown at 50% probability. Hydrogen atoms are omitted for clarity. Selected bond lengths and angles: N–Ir (2.192(5) Å), C₁–Ir (2.043(6)Å), Cl–Ir (2.4380(15) Å), N–Ir–C₁ (78.5(2)°), N–Ir–Cl (85.90(14)°), C₁–Ir–Cl (87.82(16)°).

Depository Number	
CCDC Number	1815864
Crystal Data	
Chemical Formula	C ₂₃ H ₂₉ ClIrN
Formula Weight (FW), g mol ⁻¹	547.12
Crystal System	monoclinic
Space Group	P 1 21 1
Temperature (K)	103(2)
a,b,c (Å)	8.5640(5), 13.4034(8), 9.7175(6)
<i>α,β,γ</i> (°)	90, 114.7655(8), 90
$V(Å^3)$	1012.85(11)
Ζ	2
F(000)	536
Radiation Type (Wavelength)	Mo (0.71073 Å)
Absorption Coefficient (mm ⁻¹)	6.730
Crystal Size (mm)	$0.120 \times 0.180 \times 0.200$

Data Collection	
Theta Range for Data Collection	2.76° to 30.50°
Index Ranges	$-12 \le h \le 12, -19 \le k \le 19, -13 \le l \le 13$
Reflections Collected	5788
T _{min} , T _{max}	0.3460, 0.4990
Refinement	
Refinement Method	Full-matrix least-squares on F ²
Refinement Program	SHELXL-2013 (Sheldrick, 2013)
Function Minimized	$\Sigma w (F_o^2 - F_c^2)^2$
No. of Reflections	5788
No. of Restraints	1
No. of Parameters	243
Goodness-of-Fit on F ²	0.894
Final R Indices	5524 data; I>2σ(I)
	(R1 = 0.0253, WR2 = 0.0533)
	all data
	(R1 = 0.0267, WR2 = 0.0538)
Weighting Scheme	$w = 1 / [\sigma^2(F_o^2)]$, where $P = (F_o^2 + 2F_c^2) / 3$
$r_{\text{max}}, r_{\text{min}}$ (e Å ⁻³)	1.447, -1.865
R.M.S. Deviation from Mean ($e Å^{-3}$)	0.145