Electronic Supporting Information

Elucidating White Light-Emitting Emissions in Tm³⁺/Dy³⁺ Codoped Polyoxometalates: a Color-Tunable and Energy Transfer Mechanism Study

Hechen Wu, Minna Zhi, Vikram Singh, Huafeng Li, Pengtao Ma* Jingyang Niu and Jingping

Wang*

Henan Key Laboratory of Polyoxometalate Chemistry, Institute of Molecular and Crystal Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, P. R. China

Experimental section. Synthesis of 2–8 Photoluminescence section Tables Table S1 The Calculated and Found Analyses of Tm and Dy in 1–8. Table S2. Selected bond angels (°) of 1. Table S3. Selected bond lengths (Å) of 1.

Figures

Fig. S1. Thermogravimetric curves of spectra of 1–8.

Fig. S2. IR spectra of 1–8.

Fig. S3. EDX elemental spectra of **1–8** showing the presence of C, N, O, P, K, W, Tm and Dy element in the lattice.

Fig S4. The packing arrangement of 1.

Fig. S5. STEM-EDX element maps of 1.

Fig. S6. STEM-EDX element maps of 2.

Fig. S7. (a) The PL emission spectra of **1** (λ_{ex} = 360 nm); (b) the PL emission spectra of **2** (λ_{ex} = 367 nm).

Fig S8. (a) The PL excitation spectra of **1** (λ_{em} = 452 nm); (b) the PL excitation spectra of **2** (λ_{em} = 573 nm).

Fig S9. The PL emission spectra of $[P_2W_{19}O_{67}(H_2O)]^{14-}$ (λ_{ex} = 360 nm).

Fig S10. CIE chromaticity diagram of 1 and 2.

Fig S11. The time resolved emission spectroscopy of 1 (λ_{ex} = 360 nm).

Fig S12. The time resolved emission spectroscopy of 2 (λ_{ex} = 360 nm).

Fig S13. The PL decay curve of Tm³⁺ centre in 1, 3–8 (λ_{ex} = 360 nm, λ_{em} = 452 nm).

Experimental section

Synthesis of 2

 $DyCl_3 \cdot 6H_2O$ (0.228 g, 0.605 mmol) was dissolved in 30 mL of deionized water, and then tartaric acid (0.120 g, 0.800 mmol) and precursor $K_{14}[P_2W_{19}O_{69}(H_2O)] \cdot 24H_2O$ (2.120 g, 0.465 mmol) were added step by step with stirring. The pH value of mixture solution was adjusted to approximately 3.2 by 3 M KOH solution and heated to 60 °C for 1.5 h. Subsequently, tetramethyl ammonium chloride (TMACI) (0.110 g, 1.000 mmol) was added and stirred for another 30 min. The resulting solution was cooled to room temperature and filtered to evaporate for two weeks to obtain colourless block crystals at room temperature.

Synthesis of 3 (Tm³⁺:Dy³⁺ = 0.97:0.03)

TmCl₃·6H₂O (0.221 g, 0.576 mmol) and DyCl₃·6H₂O (0.007 g, 0.019 mmol) were dissolved in 30 mL of deionized water, and then tartaric acid (0.120 g, 0.800 mmol) and precursor $K_{14}[P_2W_{19}O_{69}(H_2O)]\cdot24H_2O$ (2.120 g, 0.465 mmol) were added step by step with stirring. The pH value of mixture solution was adjusted to approximately 3.2 by 3 M KOH solution and heated to 60 °C for 1.5 h. Subsequently, tetramethyl ammonium chloride (TMACI) (0.110 g, 1.000 mmol) was added and stirred for another 30 min. The resulting solution was cooled to room temperature and filtered to evaporate for two weeks to obtain colorless block crystals at room temperature.

Synthesis of 4 (Tm³⁺:Dy³⁺ = 0.92:0.08)

TmCl₃·6H₂O (0.210 g, 0.547 mmol) and DyCl₃·6H₂O (0.018 g, 0.048 mmol) were dissolved in 30 mL of deionized water, and then tartaric acid (0.120 g, 0.800 mmol) and precursor $K_{14}[P_2W_{19}O_{69}(H_2O)]\cdot24H_2O$ (2.120 g, 0.465 mmol) were added step by step with stirring. The pH value of mixture solution was adjusted to approximately 3.2 by 3 M KOH solution and heated to 60 °C for 1.5 h. Subsequently, tetramethyl ammonium chloride (TMACI) (0.110 g, 1.000 mmol) was added and stirred for another 30 min. The resulting solution was cooled to room temperature and filtered to evaporate for two weeks to obtain colorless block crystals at room temperature.

Synthesis of 5 (Tm³⁺:Dy³⁺ = 0.90:0.10)

TmCl₃·6H₂O (0.205 g, 0.534 mmol) and DyCl₃·6H₂O (0.023 g, 0.061 mmol) were dissolved in 30 mL of deionized water, and then tartaric acid (0.120 g, 0.800 mmol) and precursor $K_{14}[P_2W_{19}O_{69}(H_2O)]\cdot24H_2O$ (2.120 g, 0.465 mmol) were added step by step with stirring. The pH value of mixture solution was adjusted to approximately 3.2 by 3 M KOH solution and heated to 60 °C for 1.5 h. Subsequently, tetramethyl ammonium chloride (TMACI) (0.110 g, 1.000 mmol) was added and stirred for another 30 min. The resulting solution was cooled to room temperature and filtered to evaporate for two weeks to obtain colorless block crystals at room temperature.

Synthesis of 6 (Tm³⁺:Dy³⁺ = 0.80:0.20)

TmCl₃·6H₂O (0.182 g, 0.475 mmol) and DyCl₃·6H₂O (0.046 g, 0.122 mmol) were dissolved in 30 mL of deionized water, and then tartaric acid (0.120 g, 0.800 mmol) and precursor $K_{14}[P_2W_{19}O_{69}(H_2O)]\cdot24H_2O$ (2.120 g, 0.465 mmol) were added step by step with stirring. The pH value of mixture solution was adjusted to approximately 3.2 by 3 M KOH solution and heated to 60 °C for 1.5 h. Subsequently, tetramethyl ammonium chloride (TMACl) (0.110 g, 1.000 mmol) was added and stirred for another 30 min. The resulting solution was cooled to room temperature and filtered to evaporate for two weeks to obtain colorless block crystals at room temperature.

Synthesis of 7 (Tm³⁺:Dy³⁺ = 0.75:0.25)

TmCl₃·6H₂O (0.171 g, 0.446 mmol) and DyCl₃·6H₂O (0.057 g, 0.151 mmol) were dissolved in 30 mL of deionized water, and then tartaric acid (0.120 g, 0.800 mmol) and precursor $K_{14}[P_2W_{19}O_{69}(H_2O)]\cdot24H_2O$ (2.120 g, 0.465 mmol) were added step by step with stirring. The pH value of mixture solution was adjusted to approximately 3.2 by 3 M KOH solution and heated to 60 °C for 1.5 h. Subsequently, tetramethyl ammonium chloride (TMACl) (0.110 g, 1.000 mmol) was added and stirred for another 30 min. The resulting solution was cooled to room temperature and filtered to evaporate for two weeks to obtain colorless block crystals at room temperature.

Synthesis of 8 (Tm³⁺:Dy³⁺ = 0.50:0.50)

TmCl₃·6H₂O (0.114 g, 0.297 mmol) and DyCl₃·6H₂O (0.114 g, 0.302 mmol) were dissolved in 30 mL of deionized water, and then tartaric acid (0.120 g, 0.800 mmol) and precursor $K_{14}[P_2W_{19}O_{69}(H_2O)]\cdot24H_2O$ (2.120 g, 0.465 mmol) were added step by step with stirring. The pH value of mixture solution was adjusted to approximately 3.2 by 3 M KOH solution and heated to 60 °C for 1.5 h. Subsequently, tetramethyl ammonium chloride (TMACI) (0.110 g, 1.000 mmol) was added and stirred for another 30 min. The resulting solution was cooled to room temperature and filtered to evaporate for two weeks to obtain colorless block crystals at room temperature.

Photoluminescence section

The CIE 1931 chromaticity coordinates, color purity, and CCT are important optical parameters in research of PL properties of luminescent complexes. The CCT can be calculated by the following equations (1):

n = $(x - x_e)/(y_e - y)$ CCT = 499.0n³ + 3525.0n² +6823.3n + 5520.22 (1) Where $x_e = 0.3320$; $y_e = 0.1858$; x, y are the CIE 1931 chromaticity coordinates.

The lifetime adheres to a double exponential decay mode, which can be fitted with the formulae (2):

$$I(t) = A_1 e^{\left(-\frac{t}{\tau_1}\right)} + A_2 e^{\left(-\frac{t}{\tau_2}\right)}$$
(2)

Where I(t) represents the emission intensity at time t, A_1 and A_2 represent weighting parameters; τ_1 and τ_2 represent short time and long time component. The double decay time may be the two emitting Tm³⁺ centres with different coordinated configurations. In generally, the average lifetime $^{*}\tau$ could be regarded as experimental lifetime value and be calculated by the following formulae (3):

$$\tau^* = \frac{A_1 \tau_1^2 + A_2 \tau_2^2}{A_1 \tau_1 + A_2 \tau_2}$$

Sample Calcd Found Tm(% Dy(%) Tm(%) Dy(%)) 0 1 4.81 4.80 4.69 2 4.64 0 3 4.67 0.14 4.71 80.0 4 4.43 0.37 4.60 0.24 5 4.33 0.46 4.26 0.36 6 3.85 0.93 3.67 0.74 7 3.51 3.61 1.16 1.06 8 2.32 2.41 2.21 2.18

Table S1 The Calculated and Found Analyses of Tm and Dy in 1–8.

 Table S2.
 Selected bond angels (°) of 1.

Table 52. Selected bol			1
Bond	Angel	Bond	Angel
023-Tm1-029	77.3(11)	015-Tm2-040	76.9(8)
023-Tm1-036	74.3(10)	015-Tm2-074	72.4(10)
023-Tm1-046	123.2(10)	015-Tm2-086	133.9(10)
023-Tm1-081	71.7(10)	015-Tm2-088	80.2(12)
023-Tm1-083	138.8(11)	O40-Tm2-074	138.7(9)
023-Tm1-085	139.6(11)	O40-Tm2-O86	72.2(9)
023-Tm1-089	78.2(10)	O40-Tm2-O88	76.6(12)
029-Tm1-036	121.3(12)	042-Tm2-015	126.1(11)
029-Tm1-046	75.1(10)	O42-Tm2-O40	81.0(9)
029-Tm1-081	77.3(11)	042-Tm2-043	73.5(10)
029-Tm1-083	76.9(13)	042-Tm2-074	139.9(9)
O29-Tm1-O89	140.5(11)	042-Tm2-086	81.7(11)
O36-Tm1-O46	79.4(10)	042-Tm2-087	80.0(12)
036-Tm1-081	138.1(10)	042-Tm2-088	140.0(12)
036-Tm1-083	146.9(12)	043-Tm2-015	78.6(10)
O36-Tm1-O89	80.4(11)	043-Tm2-040	123.0(10)
046-Tm1-081	140.7(10)	043-Tm2-074	77.1(10)
083-Tm1-046	79.7(12)	O43-Tm2-O86	147.3(11)
083-Tm1-081	70.6(12)	043-Tm2-087	79.3(12)
083-Tm1-089	102.9(12)	043-Tm2-088	146.2(12)
085-Tm1-029	142.9(12)	074-Tm2-088	71.5(12)
085-Tm1-036	77.8(11)	086-Tm2-074	111.5(11)
085-Tm1-046	78.4(11)	086-Tm2-088	60.1(13)
085-Tm1-081	115.0(12)	087-Tm2-015	138.1(11)

085-Tm1-083	73.1(12)	087-Tm2-040	144.5(10)
085-Tm1-089	68.8(12)	087-Tm2-074	68.1(12)
089-Tm1-046	144.4(10)	087-Tm2-086	75.6(12)
089-Tm1-081	69.4(11)	087-Tm2-088	99.9(14)
W4-023-Tm1	138.4(15)	W12-O40-Tm2	134.2(11)
W7-029-Tm1	154.9(18)	W14-O42-Tm2	157.2(16)
W19-O36-Tm1	142.7(18)	W5-043-Tm2	158.7(16)
W11-046-Tm1	157.1(14)	W6-015-Tm2	136.8(14)

Table S3. Selected bond lengths (Å) of 1.

Bond	Length	Bond	Length
Tm1-023	2.32(3)	Tm2-015	2.25(2)
Tm1-029	2.31(3)	Tm2-040	2.34(2)
Tm1-036	2.28(3)	Tm2-042	2.29(4)
Tm1-046	2.26(3)	Tm2-043	2.25(3)
Tm1-081	2.48(3)	Tm2-074	2.43(3)
Tm1-083	2.35(4)	Tm2–086	2.40(3)
Tm1-085	2.39(4)	Tm2–087	2.26(4)
Tm1-089	2.43(3)	Tm2-088	2.41(4)

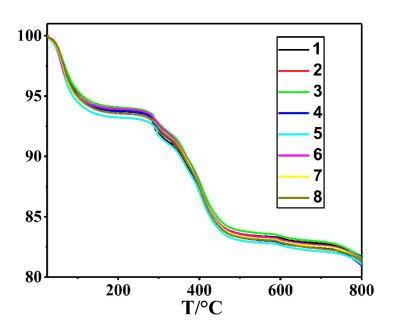


Fig. S1. Thermogravimetric curves of spectra of 1–8.

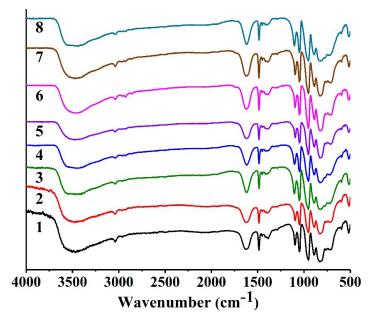
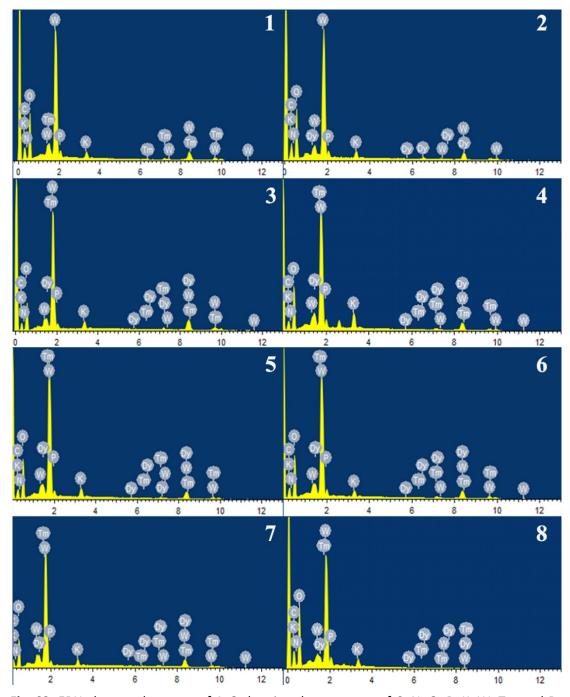
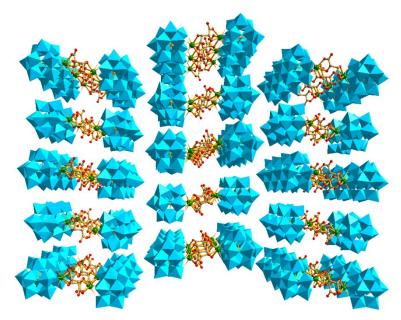




Fig. S2. IR spectra of 1–8.

Fig. S3. EDX elemental spectra of **1–8** showing the presence of C, N, O, P, K, W, Tm and Dy element in the lattice. The measured ratios of Tm^{3+}/Dy^{3+} ions are almost consistent with nominal ratios.

Fig S4. The packing arrangement of polyanions of **1**. (Color code: WO_6 , sky blue; P, pink; Tm, green; O, red; C, gray)

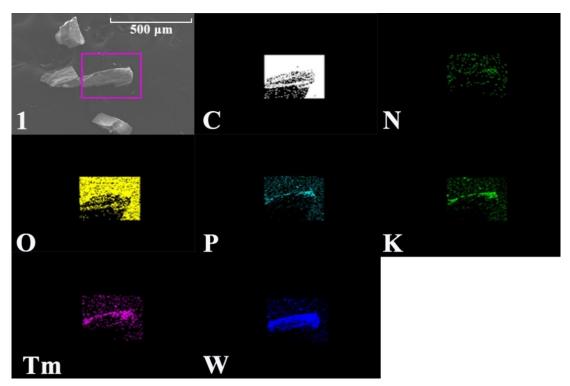


Fig. S5. STEM-EDX element maps of 1.

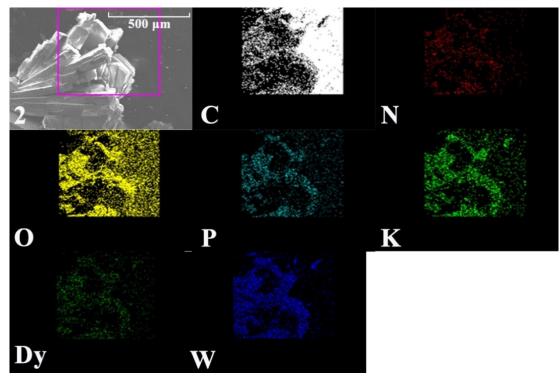


Fig. S6. STEM-EDX element maps of 2.

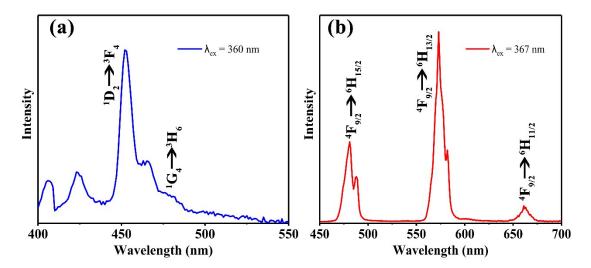


Fig. S7. (a) The PL emission spectra of 1 (λ_{ex} = 360 nm); (b) the PL emission spectra of 2 (λ_{ex} = 367 nm).

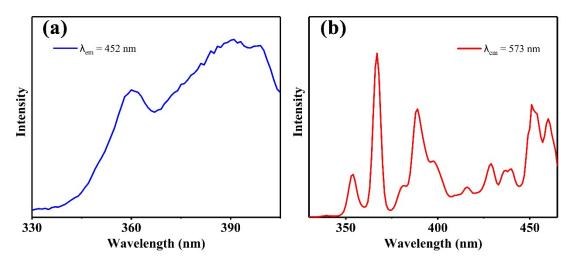


Fig S8. (a) The PL excitation spectra of 1 (λ_{em} = 452 nm); (b) the PL excitation spectra of 2 (λ_{em} = 573 nm).

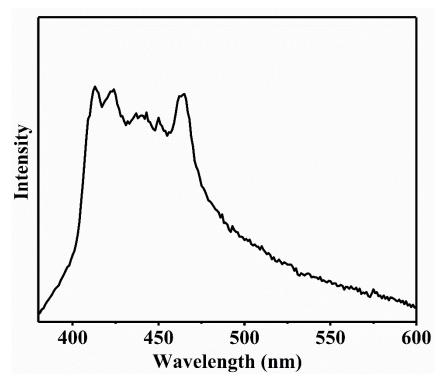


Fig S9. The PL emission spectra of $K_{14}[P_2W_{19}O_{69}(H_2O)]\cdot 24H_2O$ (λ_{ex} = 360 nm).

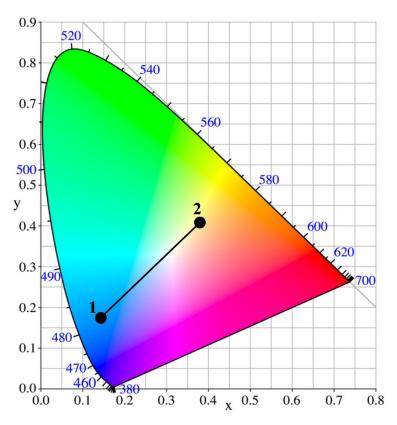


Fig S10. CIE chromaticity diagram of 1 and 2.

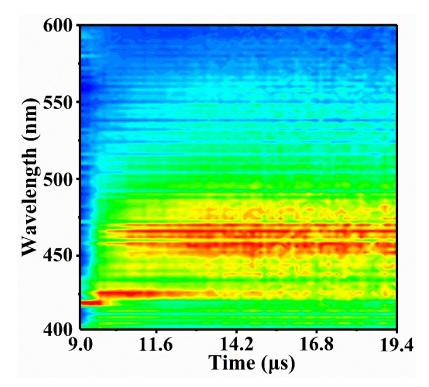


Fig S11. The time resolved emission spectroscopy of 1 (λ_{ex} = 360 nm).

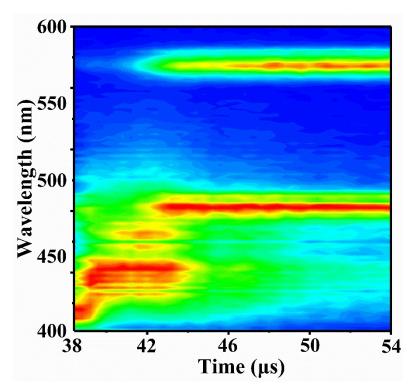


Fig S12. The time resolved emission spectroscopy of 2 (λ_{ex} = 360 nm).

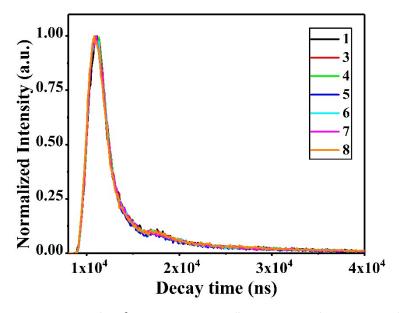


Fig S13. The PL decay curve of Tm³⁺ centre in 1, 3–8 (λ_{ex} = 360 nm, λ_{em} = 452 nm).