Supporting Information

Boosting visible-light photocatalytic H₂ evolution by UiO-66-NH₂ octahedrons with ultrasmall NiO nanoparticles decorating

Cong-Cong Shen,^{a, b} Ya-Nan Liu,^a Xin Wang,^a Xiao-Xiang Fang,^a Zhi-Wei Zhao,^a Nan Jiang,^a Liu-bo Ma,^a Xiao Zhou,^a Tuck-Yun Cheang^{*c} and An-Wu Xu^{*a}

 ^a Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at Microscale, Department of chemistry, University of Science and Technology of China, Hefei 230026, P.R. China. E-mail: <u>anwuxu@ustc.edu.cn</u>
^b School of Science, Tianjin Chengjian University, Tianjin 300384, China

^c Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China. E-mail: 13631322559@163.com

Fig. S1 Nitrogen adsorption–desorption isotherms of U6N (A) and U6N-NiO-2 (B) samples and the corresponding pore size distribution curves (C) and (D).

Fig. S2 Comparison of visible-light photocatalytic H_2 evolution activities between CdS, U6N-NiO-2 and TiO₂ samples. Reaction conditions are the same as those in Fig. 7B.