MOFs-derived Mn doped porous CoP nanosheets as efficient and stable bifunctional electrocatalysts for water splitting

Yinle Li,‡ Baoming Jia,‡ Qinglin Liu, Mengke Cai, Ziqian Xue, Yanan Fan, Hai-Ping Wang, Cheng-Yong Su, Guangqin Li*

MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China,

E-mail: <u>liguangqin@mail.sysu.edu.cn</u>

Figure S1. (a) XRD patterns of the as-synthesized ZIF-67; (b) N_2 adsorption-desorption isotherm of ZIF-67; (c and d) the SEM images of precursor ZIF-67

Figure S2. (a) XRD patterns of different etching time.

Figure S3 the SEM images of (a, b, c) obtained materials after etching 5 min; (d, e, f) etching 10 min; (g, h, i) etching 15 min; (j, k, l) etching 20 min;

Figure S4 TEM images of MnCo₂O₄ nanopsheets

Figure S5 the pore size distributions of $MnCo_2O_4$ and Mn-CoP nanosheets calculated by using NLDFT method.

Figure S6 (a) The XRD of CoO and CoP nanoparticles; (b) N₂ sorption of hollow CoP; (c-d) SEM and TEM of hollow CoP nanoparticles

Figure S7 (a) The XRD of Mn-CoP nanoparticles; (b) N₂ sorption of Mn-CoP nanoparticles; (c-d) SEM of Mn-CoP nanoparticles

Figure S8 the HER performance of Mn-CoP nanoparticles and Mn-CoP nanosheets in $0.5 \text{ M H}_2\text{SO}_4$ and 1 M KOH

Figure S9 Nyquist plots of the as-synthesized Mn-CoP nanosheets, hollow CoP and Mn-CoP nanoparticles catalysts in (a) 0.5 M H₂SO₄ with an overpotential of 165 mV vs. RHE and (b) 1 M KOH with an overpotential of 200 mV vs. RHE for HER.

Figure S10 Voltammograms of the (a) Mn-CoP nanosheets; (b) hollow CoP, (c) Mn-CoP nanoparticles at various scan rates (40-160 mV s⁻¹); (d) Current difference (Δj) plotted against the scan rate.

Figure S11 the SEM and TEM image of the Mn-CoP nanosheets catalyst after long term test in (a and b) 0.5 M H_2SO_4 and (c and d) 1 M KOH for HER. (e) HAADF-STEM elemental mapping of the Mn-CoP nanosheets catalyst after long term test 0.5 M H_2SO_4 solution .

Figure S12 the XRD of Mn-CoP nanosheets before and after cycles tests

Figure S13 the LSV curves of the Mn-CoP nanosheets and Mn-CoP nanoparticles catalyst in 1 M KOH for OER.

Figure S14 Nyquist plots of the as-synthesized catalysts in 1 M KOH with an overpotential of 320 mV vs. RHE for OER.

Figure S15 XPS survey spectrum for Mn-CoP nanosheets

Catalyst	Overpotential @ j=10 / mV	Tafel slope (mV·dec ⁻¹)	Reference	
Cu ₃ P NW/CF	143	67	Angew. Chem. Int. Ed., 2014, 53 , 9577	
Ni _{0.62} Co _{0.38} P	166	72	<i>Adv. Funct. Mater.</i> , 2016, 26 , 7644.	
MoS _{2(1-x)} P _x	150	57	<i>Adv. Mater.</i> , 2016, 28 , 1427.	
CoPx NPs@NC	191	51	<i>Chem. Mater</i> .2015, 27 , 7636	
Mo ₂ C@PC	177	96	Angew. Chem. Int. Ed. 2016, 55 , 12854	
Mn _{0.05} Co _{0.95} Se ₂	195	36	J. Am. Chem. Soc. 2016, 138, 5087.	
CoP hollow polyhedron	159	59	ACS Appl. Mater. Interfaces 2016, 8 , 2158	
CoNi@NC	142	104	Angew. Chem., Int. Ed. 2015, 54 , 2100	
CoP@C	170	61	<i>J. Power Source</i> 2015, 286 , 464	
CoP/RGO-0.36	250	104.8	<i>J. Mater. Chem. A</i> 2015, 3 , 5337	
Mn-CoP nanosheets	148	61	This work	

Tabls S1 Summary of various non-noble metal catalysts for HER in 0.5 M H_2SO_4 .

Catalyst	Overpotential @ j=10 / mV	Tafel slope (mV·dec ⁻¹)	Reference	
CoP/CC	209	129	<i>J. Am. Chem. Soc.</i> , 2014, 136 , 7587.	
NiCoP/rGO	209	124.1	<i>Adv. Funct.Mater.</i> , 2016, 26 , 6785.	
MoB	225	59	Angew. Chem. Int. Ed. 2012, 51 , 12703.	
Co/CoP	253	73.8	<i>Adv. Energy Mater.</i> , 2017, 7 ,1602355.	
FeP nanorod arrays	218	146	ACS Catalysis, 2014, 4, 4065.	
Co, N-codoped nanocarbons	240	85	Nanoscale 2015, 7, 2306.	
Ni ₂ P nanoparticles	225	100	<i>Phys. Chem. Chem. Phys.</i> 2014, 16 , 5917.	
NiFe LDH/NF	210	58.9	<i>Science</i> 2014, 345 , 1593	
Ni ₃ S ₂ /NF	223	123.3	J. Am. Chem. Soc. 2015, 137 , 14023	
Co ₂ B-500/NG	230	92.4	<i>Adv. Energy Mater.</i> 2016, 1502313.	
CoOx@CN	232	N/A	J. Am. Chem. Soc. 2015, 137, 2688.	
CoP/CC	209	129	J. Am. Chem. Soc. 2014, 136, 7587.	
Co-NRCNTs	370	N/A	Angew. Chem. Int. Ed. 2014, 53, 4372.	
Ni ₂ P	205	N/A	J. Am. Chem. Soc. 2013, 135, 9267.	
FeP NAs/CC	218	146	ACS Catal. 2014, 4,4065.	
Co@N-CNTs	370	N/A	Angew. Chem., Int. Ed. 2014, 53 , 4372	
Mn-CoP nanosheets	195	69	This work	

Table S2. Summary of various Co-based non-noble metal catalysts for HER in 1 M KOH.

Catalyst	Overpotential @ j=10 / mV	Tafel slope (mV·dec ⁻¹)	Reference
CoP hollow polyhedron	400	57	<i>ACS Appl. Mater.</i> <i>Interfaces</i> 2016, 8 , 2158
Zn-doped CoSe ₂ /CFC	356	88	<i>ACS Appl. Mater.</i> <i>Interfaces</i> 2016, 8 , 26902
ZnxCo _{3-x} O ₄ yolk- hell polyhedron	337	59.3	<i>ACS Appl. Mater.</i> <i>Interfaces</i> 2017, 9 , 31777
Co-P films	345	47	Angew. Chem. Int. Ed. 2015, 127 , 6349
Co-P/NC	319	52	<i>Chem. Mater.</i> 2015, 27 , 7636
NixCo _{3-x} O ₄	370	59-64	<i>Adv. Mater.</i> 2010 , 22 , 1926.
Co ₃ O ₄ /N-rmGO	310	67	<i>Nat. Mater.</i> 2011 , 10 , 780
CoOx@CN	385	N/A	<i>J. Am. Chem. Soc.</i> 2015 , 137 , 2688.
CoCo LDH	393	59	<i>Nat. Commun.</i> 2014 , 5 , 4477
MnCo ₂ O _x	410	84	<i>J. Am. Chem. Soc.</i> 2014 , 136 , 16481.
Mn-CoP nanosheets	290	76	This work

Table S3. Summary of various Co-based non-noble metal catalysts for OER in 1 M KOH.