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Polyphenylacetylene data and spectra
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Fig. S1: Regioselectivity of monomer addition.
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Fig. S2: IR spectrum of a polymer isolated from a catalytic reaction performed at 25 °C with a monomer to catalyst ratio of

50:1 employing catalyst C14.
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Fig. S3: 'H NMR spectrum (CDCls) of PPA isolated from (a) a catalytic reaction performed at 25 °C (b) a catalytic reaction
performed at 60 °C showing proton resonances in the region 8 8.00-5.00 ppm. Complex C14 was employed as precatalyst
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Fig. S4: Gradual colour change of the catalytic reaction at 25°C, using C14 as precatalyst. Colour change at (a) before
phenylacetylene addition, (b) 24 hours, (c¢) 48 hours and (d) 72 hours.
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Fig. S5: Stacked '"H NMR spectrum in dg-THF for (a) ligand L4 and (b) ligand L4 in the presence of HCI. A mixture of the
free imine ligand and iminium ligand is observed when HCI is added. Confirmed resonances corresponding to the iminium
ligand are indicated by
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Fig. S6: Full variable time 'H NMR spectrum in THF-d; (recorded at 25°C) of palladacycle C14 at (a) before phenylacetylene addition; (b) after phenylacetylene addition; (c) 24 hours; (d) 48
hours and (e) 72 hours. The solvent signal in all spectra was normalized to 1
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Fig. S7: Full variable time '3C NMR spectrum in THF-d; (recorded at 25°C) of palladacycle C14 at (a) before phenylacetylene addition; (b) 6 hours; (c) 30 hours and (d) 54 hours and (e). The
solvent signal in all spectra was normalized to 1
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Experimental and characterization data
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Fig. S8: (a) u-Cl Binuclear, (b) neutral and (c) cationic palladacycle with numbering for NMR data. Free rotation about the
C-C bond of the isopropyl moiety and C-C bond in the anionic counterion. X and L denotes the different substituents (X = H,
Cl, Br, F, OMe) and phosphine ligands (L = PTA, PCys, PPh;) respectively.

NMR abbreviations
s = singlet, d = doublet, t = triplet, dd = doublet of doublets, td = triplet of doublets, sept. = septet,
m = multiplet (denotes complex pattern for a single proton resonance), comp. = complex (denotes

complex pattern of overlapping proton resonances).

Synthesis of p-Cl bridge palladacycles

Ligand (0.386 mmol) was added to a stirring solution of (MeCN),PdCl, (0.386 mmol) and sodium
acetate (0.771 mmol) dissolved in dichloromethane (10 mL) and the resulting reaction mixture was
stirred for 24 hours at room temperature. After the allotted time, the solvent was removed in vacuo and
the yellow-orange solid residue was redissolved in dichloromethane (20 mL) and filtered through celite.
The solvent was removed in vacuo from the yellow-orange filtrate and the light orange product was

isolated by means of recrystallization from dichloromethane/hexane at room temperature.

[PdCIl(2-F-CsH3) CH=N{2,6-'Pry-CsH;} ], (C4)

Yield: 73 %. Melting point: 188-190 °C (decomposes without melting). FT-IR v(C=N) 1605 cm™!; 'H
NMR (300 MHz, CDCI;, numbering as per Fig. S8a): 6 8.02 (s, 2H, H7), 6 7.37-7.28 (m, 2H, H?),
8 7.24-7.15 (m, 4H, Ar-H), 6 7.11-7.00 (m, 2H, Ar-H), 6 6.99-6.91 (m, 2H, H*), 6 6.73 (t, 3Jyn = 9.0
Hz, 2H, H?, & 3.56-3.40 (m, 4H, H'“%), & 139 (d, 3Jyn = 6.7 Hz, 12H, H'SV),
0 1.17 (d, 3Jy.q = 6.7 Hz, 12H, H'>17). BC {'H} NMR (75 MHz, CDCl;, numbering as per Fig. S8a):
8 171.5 (C7), 6 161.5 (Ar-C), 6 158.0 (Ar-C), 6 156.4 (Ar-C), & 144.4 (Ar-C), & 141.6 (Ar-C), 6 133.2
(Ar-C), 6 129.7 (Ar-C), 6 128.2 (Ar-C), 8 123.5 (Ar-C), 6 111.5 (d, Jor = 18.9 Hz, C"), 5 28.4 (C'419),
d 24.6 (C'>17), 5 23.1 (C'317), ESI-MS (+.ve, m/z): 854.1 [M-CI+MeCN]*; 813.1 [M-CI]*; 429.1
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[(M/2)-Cl+MeCN]?". 4nal. Calc. for C33H4CLF,N,Pdy: C, 53.79; H, 4.99; N, 3.30. Found: C, 53.71;
H, 5.41; N, 3.07.

[PdCI(2-OMe-CsH;) CH=N{2,6-'Pr,-CsH;} ], (C5)

Yield: 75 %. Melting point: >250 °C. FT-IR v(C=N) 1581 cm™'; '"H NMR (400 MHz, CDCl;, numbering
as per Fig. S8a): 6 8.05 (s, 2H, H7), 8 7.29 (t, 3Jy.y = 7.7 Hz, 2H, H?), 6 7.17 (d, 3Jy.qy = 7.5 Hz, 4H,
H'%12), 8 6.99 (t, 3Jy.x = 8.1 Hz, 2H, H3), 8 6.76 (d, *Ju.u = 8.1 Hz, 2H, H'), § 6.51 (d, 3Ji.; = 8.6 Hz,
2H, H*%), & 3.76 (s, 6H, o-methoxy Me), & 3.59-3.46 (m, 4H, H'*!¢), § 1.38 (d, /iy = 6.9 Hz, 12H,
H'17), 6 1.15 (d, 3Jyu = 6.9 Hz, 12H, H'>!7), 13C {{H} NMR (151 MHz, CDCl;, numbering as per Fig.
S 8a): 5 173.2 (C7), & 158.5 (Ar-C), & 157.5 (Ar-C), & 145.0 (Ar-C), 5 141.9 (Ar-C), 8 134.0 (Ar-C),
§132.9 (Ar-C), § 127.7 (Ar-C), § 126.5 (Ar-C), § 123.3 (Ar-C), § 106.9 (Ar-C),  55.5 (o-methoxy Me),
§ 283 (C416), § 24.7 (C'517), § 23.2 (C!51). ESI-MS (+.ve, m/z): 836.1 [M-CIJ*; 441.1
[(M/2)-CI+MeCNT2*; 400.1 [(M/2)-CIJ?*. Anal. Cale. for C4HagClLN,0,Pdy: C, 55.06; H, 5.54; N, 3.21.
Found: C, 54.80; H, 5.96; N, 2.93.

Synthesis of neutral palladacycles

To a stirring solution of u-Cl binuclear palladacycle complex (0.123 mmol) in dichloromethane
(10 mL) was added the phosphine (0.246 mmol). The resulting light yellow solution was stirred under
an inert atmosphere for 2 hours at room temperature. The solvent was removed in vacuo and the yellow
residue was then recrystallized from dichloromethane/diethyl ether at room temperature which afforded

the product as a yellow powder/crystals.

[Pd(PTA)(CsH,)CH=N{2,6-Pr,-CsH3}Cl] (C6)

Yield: 90 %. Melting point: 210-212 °C (decomposes without melting). FT-IR v(C=N) 1606 cm!; 'H
NMR (300 MHz, CDCl;, numbering as per Fig. S8b): & 7.98 (d, “/up = 7.7 Hz, 1H, H’), & 7.46
(m, 1H, H'), & 7357.14 (comp, 6H, ArH), & 4.66-4.50 (comp., I12H, PTA),
5 3.29-3.13 (m, 2H, H'*'6), § 1.47-0.95 (comp., 12H, H!>!7). BC {{H} NMR (75 MHz, CDCl;,
numbering as per Fig. S8b): 6 177.1 (d, 3Jcp = 4.1 Hz, C7), 6 158.2 (d, 3Jcp = 4.3 Hz, Ar-C), 6 148.0
(Ar-C), & 144.4 (Ar-C), 8 141.0 (Ar-C), 6 136.4 (d, Jcp = 9.4 Hz, Ar-C), 8 132.1 (d, Jcp = 4.6 Hz,
Ar-C), 4 130.2 (Ar-C), 8 127.4 (Ar-C), 8 125.1 (Ar-C), & 123.0 (Ar-C), 8 73.4 (d, *Jcp = 7.1 Hz, N-
CH,-N), § 52.6 (d, Jep = 16.2 Hz, N-CH,-P), § 28.5 (C'416), § 24.5 (C!517), § 23.7 (C!5:17). 31p {1}
NMR (121 MHz, CDCly): & -47.0 (s). ESI-MS (+ve, m/z): 568.2 [M-CI+MeCNT*; 565.1 [M+H]*; 527.2
[M-CI]*. Anal. Calc. for C,sH;34,CIN,PPd: C, 53.29; H, 6.08; N, 9.94. Found: C, 53.40; H, 6.08; N, 9.29.

[Pd(PTA)(2-CI-CsH3) CH=N{2,6-'Pr,-CsH;}Cl] (C7)

Yield: 79 %. Melting point: 209-211 °C (decomposes without melting). FT-IR v(C=N) 1600 cm’!; 'H
NMR (300 MHz, CDCl;, numbering as per Fig. S8b): 6 8.47 (d, “/i.p = 7.6 Hz, 1H, H") 6 7.30-7.11
(comp, 6H, Ar-H), 6 4.64-4.47, (comp., 12H, PTA), & 3.28-3.11 (m, 2H, H'*1¢),  1.32 (d, 3Jy.y = 6.7
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Hz, 6H, H'>17), 8 1.15 (d, 3Juy = 6.9 Hz, 6H, H'>17). 3C {{H} NMR (75 MHz, CDCl;, numbering as
per Fig. S8b): 5 175.7 (d, 3Jep = 4.1 Hz, C7), 5 160.4 (d, *Je.p = 4.0 Hz, Ar-C), § 144.6 (Ar-C), § 144.5
(Ar-C), 6 140.9 (Ar-C), 6 135.0 (d, Jcp = 9.6 Hz, Ar-C), 6 134.6 (Ar-C), 5 133.4 (d, Jcp = 4.8 Hz, Ar-
C), & 127.6 (Ar-C), 8 126.0 (Ar-C), 6 123.1 (Ar-C), 6 73.4 (d, 3Jcp = 7.0 Hz, N-CH,-N), & 52.5
(d, Jep = 15.9 Hz, N-CH,-P), § 28.6 (C'416), § 24.7 (C'517), § 23.0 (C'317). 3P {'H} NMR (121 MHz,
CDCly): 6 -47.6 (s). ESI-MS (+.ve, m/z): 1161.2 [2M-CI]*;604.1 [M-CI+MeCN]*; 599.1 [M+H]"; 563.1
[M-CI]%; 447.1 [M-CI-PTA+MeCN]"; 406.0 [M-CI+PTA]". Anal. Calc. for C,sH33CI,N4PPd: C, 50.22;
H, 5.56; N, 9.37. Found: C, 50.00; H, 5.54; N, 9.49.

[Pd(PTA)(2-Br-CsH;) CH=N{2,6-Pr,-C;H3}CI] (C8)

Yield: 58 %. Melting point: 231-233 °C (decomposes without melting). FT-IR v(C=N) 1597 cm’!; 'H
NMR (600 MHz, CDCl;, numbering as per Fig. S8b): & 8.47 (d, “Jup = 7.4 Hz, 1H, H’), 6 7.31
(d, 3Jun = 8.0 Hz, 1H, H?), 8 7.26 (t, *Jy.u = 7.8 Hz, 1H, H3), 6 7.20-7.17 (comp., 3H, H'®1-12) 5 7.09
(m, 1H, H%), § 4.62-4.51 (comp., 12H, PTA), & 3.24-3.15 (m, 2H, H'*16), § 1.33 (d, *Juss = 6.7 Hz, 6H,
H'>17), 6 1.16 (d, 3Juu = 6.8 Hz, 6H, H'>!7), 13C {'H} NMR (75 MHz, CDCl;, numbering as per
Fig. S8b): 5 177.7 (d, *Jep = 4.2 Hz, C7), 5 160.5 (d, *Jep = 4.0 Hz, Ar-C), & 146.0 (Ar-C), & 144.5 (Ar-
C), 8 140.9 (Ar-C), 6 135.6 (d, Jc.p = 9.3 Hz, Ar-C), 8 133.5 (d, Jc.p= 4.9 Hz, Ar-C), 6 129.3 (Ar-C),
d 127.6 (Ar-C), & 123.6 (Ar-C), & 123.1 (Ar-C), & 73.4 (d, 3Jcp = 7.1 Hz, N-CH,-N), & 52.6
(d, Jcp = 16.1 Hz, N-CH,-P), 8 28.6 (C'416), § 24.7 (C'>17), 5 23.0 (C'>17). 3P {TH} NMR (162 MHz,
CDCly): & -47.9 (s). ESI-MS (+.ve, m/z): 1249.1 [2M-CI]*; 648.09 [M-CI+MeCN]*; 643.0 [M+H]";
607.07 [M-CI1]*; 491.02 [M-CI-PTA+MeCN]*; 449.9 [M-CI-PTA]". Anal. Calc. for CsH33BrCIN,PPd:
C,46.75; H, 5.18; N, 8.72. Found.: C, 46.50; H, 6.38; N, 9.14.

[Pd(PTA)(2-F-CsHy) CH=N{2,6-Pr»-CsH;}Cl] (C9)

Yield: 89 %. Melting point: 194-197 °C (decomposes without melting). FT-IR v(C=N) 1606 cm!; 'H
NMR (300 MHz, CDCl;, numbering as per Fig. S8b): 6 8.31 (d, “Jyp = 7.6 Hz, 1H, H’),  7.35-7.20
(comp., 2H, H>), § 7.19-7.14 (comp., 2H, H'%!2), § 7.05 (dd, 3Jy = 7.4 Hz, *Jy.qy = 5.1 Hz 1H, H?),
3 6.85 (m, 1H, H*), 6 4.65-4.50 (comp., 12H, PTA), & 3.26-3.09 (m, 2H, H'*1¢), 5 1.32 (d, 3Ji.y = 6.8
Hz, 6H, H'>17), § 1.14 (d, 3Jy.q = 6.8 Hz, 6H, H'>!7), 3C {{H} NMR (75 MHz, CDCl;, numbering as
per Fig. S8b): 5 171.6 (d, *Jcp = 3.8 Hz, C7), § 163.3 (Ar-C), & 160.4 (Ar-C), & 159.8 (Ar-C), & 144.5
(Ar-C), & 141.0 (Ar-C), 5 134.4 (dd, Jep = 7.7, 4.9 Hz, Ar-C), § 132.1 (dd, Jep= 9.2, 3.2 Hz, Ar-C),
§ 127.5 (Ar-C), 8 123.1 (Ar-C) 5 112.1 (d, Jep= 19.7 Hz, Ar-C),  73.4 (d, *Jep = 7.0 Hz, N-CH,-N),
§ 52.7 (d, Jep = 16.3 Hz, N-CH,-P), 5 28.6 (C1416), § 24.6 (C!517), § 23.1 (C'517). 3P {IH} NMR
(121 MHz, CDCly): & -47.1 (s). ESI-MS (+.ve, m/z): 586.2 [M-CI+MeCN]*; 583.1 [M+H]"; 545.1
[M-CI]*. Anal. Calc. for C,sH33CIFN4PPd: C, 51.65; H, 5.72; N, 9.64. Found: C, 51.60; H, 5.52; N,
9.65.
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[Pd(PTA)(2-OMe-CyH;) CH=N{2,6-Pr,-CsH;}Cl] (C10)

Yield: 87 %. Melting point: 205-207 °C (decomposes without melting). FT-IR v(C=N) 1597 cm’!; 'H
NMR (300 MHz, CDCl;, numbering as per Fig. S8b): 6 8.40 (d, “Jyp = 7.4 Hz, 1H, H’), 6 7.30-7.12
(comp., 4H, H31011.12) ' § 6.89-6.82 (m, 1H, H*), 8 6.68 (d, *J;.;; = 8.0, 1H, H?), 8 4.65-4.48 (comp., 12H,
PTA), 8 3.80 (s, 3H, o-methoxy Me), 4 3.31-3.15 (m, 2H, H'416), 5 1.31 (d, 3Ju.y = 6.5 Hz, 6H, H'>!7),
d 1.14 (d, 3Juu = 6.5 Hz, 6H, H'>!7). 3C {'H} NMR (75 MHz, CDCl;, numbering as per Fig. S8b):
0 173.7 (C7), 6 160.3 (Ar-C), 8 159.9 (Ar-C), 6 145.0 (Ar-C), 6 141.2 (Ar-C), 3 135.6 (Ar-C), 6 134.1
(Ar-C), & 128.8 (d, Jcp = 9.4 Hz, Ar-C), & 127.1 (Ar-C), 6 122.9 (Ar-C) 3 107.7 (Ar-C), & 73.4
(d, 3Jcp = 6.8 Hz, N-CH,-N), 8 55.7 (o-methoxy Me), 6 52.6 (d, 'Jcp = 16.0 Hz, N-CH,-P), 3 28.4
(C1416) § 24.7 (C'517), § 23.1 (C'517). 31p {IH} NMR (121 MHz, CDCL): & -48.1 (s). ESI-MS
(+.ve, m/z): 598.2 [M-CI+MeCN]*; 593.1 [M+H]"; 557.2 [M-CI]*; 441.1 [M-CI-PTA+MeCNT*; 400.1
[M-CI-PTA]". Anal. Calc. for Co,xH3sCIN,OPPd: C, 52.62; H, 6.11; N, 9.44. Found: C, 52.5; H, 6.09;
N, 9.46.

[PA(P(Cy)3)(CsH,)CH=N{2,6-'Pr,-CsH3}CI] (C16)

Yield: 62 %. Melting point: 221-223 °C (decomposes without melting). FT-IR w(C=N) 1610 cm!; 'H
NMR (600 MHz, CDCl;, numbering as per Fig. S8b): & 8.01 (d, “Jup = 7.0 Hz, 1H, H’), 6 7.45
(d, *Jum = 5.9 Hz, 1H, H'"), 6 7.40 (d, 3Ji.y = 6.6 Hz, 1H, H*), 6 7.24-7.10 (comp., SH, H?310.11.12)
o 3.42-3.31 (m, 2H, H*16), § 2.70-2.56 (comp., 3H, P(Cy);), 6 2.11-1.99 (comp., SH, P(Cy);),
d 1.85-1.60 (comp., 16H, P(Cy)s), 6 1.36-1.19 (comp., 15H, H'>!'7 & P(Cy)3), 6 1.15 (d, 3Ji.y = 6.7 Hz,
6H, H!>'7), 3C {'H} NMR (75 MHz, CDCl;, numbering as per Fig. S8b): 6 176.2 (d, 3Jcp = 3.8 Hz,
C7), 6 159.1 (d, 3Jcp = 2.5 Hz, Ar-C), & 148.3 (Ar-C), & 145.7 (Ar-C), 8 141.1 (Ar-C), 6 137.5 (d, Jcp
= 5.1 Hz, Ar-C), & 130.8 (d, Jcp = 3.5 Hz, Ar-C), 6 129.2 (Ar-C), 3 126.8 (Ar-C), 6 124.3 (Ar-C),
o 122.8 (Ar-C), 6 34.3 (d, 'Jep = 21.7 Hz, P(Cy);), & 30.5 (P(Cy)s), 6 28.6 (P(Cy);), & 27.8
(d, 2Jcp = 11.1 Hz, P(Cy)s3), 8 26.6 (C'%1), 5 24.8 (C'>17), § 23.1 (C'>17). 3P {!H} NMR (120 MHz,
CDCl;): & 43.2 (s). ESI-MS (+.ve, m/z): 650.3 [M-CI]*. Anal. Calc. for C3;HssCINPPd: C, 64.72; H,
8.07; N, 2.04. Found: C, 64.38; H, 8.31; N, 1.60.

[Pd(P(Cy);)(2-CI-CsH3) CH=N{2,6-'Pr,-CsH;}CI] (C17)

Yield: 75 %. Melting point: 248-250 °C (decomposes without melting). FT-IR v(C=N) 1606 cm™!; 'H
NMR (600 MHz, CDCl;, numbering as per Fig. S8b): & 8.54 (d, “Jup = 6.7 Hz, 1H, H’),  7.31
(dd, 3Jym = 7.5, “Jpn = 2.9 Hz, 1H, H?), & 7.23 (t, 3Jy.y = 7.6 Hz, 1H, H'!), § 7.17-7.15 (comp., 2H,
H!%12) 5 7.10 (t, 3Jy.y = 7.8 Hz, 1H, H?), & 7.08-7.05 (m, 1H, H*), & 3.39-3.30 (m, 2H, H!4!6),
0 2.65-2.55 (comp., 3H, P(Cy);), 6 2.07-1.98 (comp., 7H, P(Cy)3), & 1.84-1.74 (comp., 7H, P(Cy);),
6 1.74-1.61 (comp., 9H, P(Cy)s), 6 1.33 (d, *J.u = 7.0 Hz, 6H, H!>!7),  1.28-1.20 (comp., 9H, P(Cy),),
d 1.17 (d, 3Juy = 7.0 Hz, 6H, H'>17), BC {'H} NMR (75 MHz, CDCl;, numbering as per Fig. S8b):
0 174.5(d, *Jcp=4.0Hz, C7),5 161.6 (d, *Jcp=2.2 Hz, Ar-C), 8 145.9 (Ar-C), & 144.8 (Ar-C), & 141.1
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(Ar-C), 8 136.0 (d, Jep = 5.3 Hz, Ar-C), 3 133.5 (Ar-C), & 132.0 (Ar-C), & 127.0 (Ar-C), & 125.2
(Ar-C), § 122.8 (Ar-C), 8 34.3 (d, Jep = 21.7 Hz, P(Cy)s), 8 30.6 (P(Cy)s), & 28.7 (P(Cy)s), & 27.9
(d, ZJep = 10.9 Hz, P(Cy)s), & 26.5 (C1416), § 24.9 (C'517), § 23.0 (C'>17). 3P {IH} NMR (120 MHz,
CDCly): § 42.8 (s). ESI-MS (+.ve, m/z): 730.2 [M-CI]*. Anal. Calc. for C;Hs,CLLNPPd+1CH,CL: C,
56.62; H, 7.00; N, 1.74. Found: C, 56.82; H, 6.63; N, 1.15.

[Pd(P(Cy);)(2-Br-CsHy) CH=N{2,6-'Pr»-CsH;}Cl] (C18)

Yield: 81 %. Melting point: >250 °C. FT-IR v(C=N) 1604 cm’!; "H NMR (600 MHz, CDCl;, numbering
as per Fig. S8b): § 8.53 (d, “Jip = 6.7 Hz, 1H, H7), § 7.35 (dd, i = 7.6, “ian = 2.9 Hz, 1H,H2), &
7.27-7.20 (comp., 2H, H*!1), § 7.17-7.14 (comp., 2H, H'%12), § 7.00 (t, *Jy.y = 7.8 Hz, 1H,H3), 8 3.38-
3.29 (m, 2H, H%19), § 2.64-2.53 (comp., 3H, P(Cy);), & 2.06-1.98 (comp., 6H, P(Cy),),
d 1.82-1.74 (comp., 6H, P(Cy);), & 1.74-1.59 (comp., 9H, P(Cy)s), 6 1.36-1.13 (comp., 20H, H'>""&
P(Cy)s3). 3C {'H} NMR (75 MHz, CDCl;, numbering as per Fig. S8b): & 176.8 (d, 3Jcp = 3.9 Hz, C7),
0 161.8 (d, *Jcp = 2.0 Hz, Ar-C), 3 146.0 (Ar-C), 6 145.8 (Ar-C), 6 141.1 (Ar-C), 6 136.7 (d, Jcp=5.0
Hz, Ar-C), § 132.2 (d, Jop = 3.4 Hz, Ar-C), 5 128.5 (Ar-C), 5 127.0 (Ar-C), 5 122.9 (Ar-C), 5 122.6
(Ar-C), 6 34.3 (d, 'Jep = 23.5 Hz, P(Cy)3), 8 30.5 (P(Cy)s), 6 28.7 (P(Cy)3), 6 27.8 (d, 2Jcp = 11.4 Hz,
P(Cy)s), 6 26.5 (C'#16), § 24.9 (C!>17), 5 23.0 (C'>17). 3P {'H} NMR (120 MHz, CDCl;): & 42.6 (s).
ESI-MS (+.ve, m/z): 730.2 [M-CI]*; 491.0 [M-CI-PCy;+MeCN]". 4nal. Calc. for C3;Hs4BrCINPPd: C,
58.05; H, 7.11; N, 1.83. Found: C, 57.60; H, 6.54; N, 2.04.

[Pd(P(Cy);)(2-F-CsH3) CH=N{2,6-'Pr,-CsH;}Cl] (C19)

Yield: 74 %. Melting point: 227-230 °C (decomposes without melting). FT-IR v(C=N) 1610 cm!; 'H
NMR (600 MHz, CDCl;, numbering as per Fig. S8b): 6 8.37 (d, “Jyp = 6.7 Hz, 1H, H'), 6 7.24-7.17
(comp., 3H, Ar-H), 6 7.17-7.13 (comp., 2H, Ar-H), 6 6.80-6.75 (m, 1H, H'), & 3.36-3.28 (m, 2H,
H!416), § 2.67-2.57 (comp., 3H, P(Cy);), 6 2.08-1.99 (comp., 5H, P(Cy);), 6 1.82-1.74 (comp., 6H,
P(Cy);), 6 1.73-1.61 (comp., 10H, P(Cy);), & 1.32 (d, 3Jun = 6.8 Hz, 6H, H'>!), § 1.29-1.18
(comp., 10H, P(Cy)3), 6 1.15 (d, 3.5 = 6.9 Hz, 6H, H'>!7). 13C {'H} NMR (75 MHz, CDCl;, numbering
as per Fig. S8b): & 170.7 (d, 3Jcp = 3.7 Hz, C7), 3 162.8 (Ar-C), & 161.6 (Ar-C), 6 159.3 (Ar-C),
0 145.8 (Ar-C), 8 141.1 (Ar-C), 6 135.3 (d, Jcp = 3.6 Hz, Ar-C), 6 133.1 (dq, Jep = 18.3 Hz, Jcp = 3.6
Hz, Ar-C), 3 126.9 (Ar-C), 8 122.8 (Ar-C), & 111.0 (Ar-C), & 34.4 (d, 'Jcp = 21.1 Hz, P(Cy)s;), 6 30.5
(P(Cy)3), 6 28.6 (P(Cy)3), & 27.8 (d, 2Jc.p = 11.4 Hz, P(Cy);), 6 26.5 (C'416), § 24.8 (C'>'7), 5 23.0
(C'517).31p {TH} NMR (120 MHz, CDCls): 6 43.3 (s). ESI-MS (+.ve, m/z): 680.30 [M-CI]*. Anal. Calc.
for C;,Hs4,CIFNPPd*1CH,Cl,: C, 57.80; H, 7.15; N, 1.77. Found: C, 58.18; H, 7.81; N, 1.33.

[Pd(P(Cy);)(2-OMe-CsH;) CH=N{2,6-'Pr,-CsH;}Cl] (C20)

Yield: 73 %. Melting point: >250 °C. FT-IR v(C=N) 1609 cm™'; '"H NMR (300 MHz, CDCl;, numbering
as per Fig. S8b): 6 8.46 (d, “Jup = 7.4 Hz, 1H, H’), § 7.24-7.09 (comp., 4H, H>1%11:12) /5 6.99 (dd, 3Ji.n
= 7.8, %Jun = 3.0 Hz, 1H, H2), 5 6.61 (d, *Juup = 7.6 Hz, 1H, H), § 3.78 (s, 3H, o-methoxy Me),5 3.45-
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3.30 (m, 2H, H%19), § 2.70-2.52 (comp., 3H, P(Cy);), & 2.12-1.95 (comp., 6H, P(Cy),),
6 1.87-1.52 (comp., 16H, P(Cy);), 6 1.38-1.09 (comp., 20H, P(Cy); & H'>!7). 3C {'H} NMR (75 MHz,
CDCls, numbering as per Fig. S8b): & 172.9 (d, *Jcp = 4.2 Hz, C7), 6 161.6 (Ar-C), 5 159.2 (Ar-C),
0 146.4 (Ar-C), 5 141.4 (Ar-C), 8 136.1 (Ar-C), 8 132.6 (Ar-C), 6 130.0 (d, Jcp=4.8 Hz, Ar-C), 5 126.6
(Ar-C), 8 122.7 (Ar-C), & 106.7 (Ar-C), 6 55.5 (o-methoxy Me), & 34.3 (d, 'Jep = 21.7 Hz, P(Cy),),
3 30.6 (P(Cy)s), 6 28.5 (P(Cy)3), 6 27.9 (d, 2Jc.p = 10.9 Hz, P(Cy)3), 8 26.6 (C'+19), § 24.9 (C'>17), 6 23.1
(C1517), 31p {IH} NMR (120 MHz, CDCl;): & 42.2 (s). ESI-MS (+.ve, m/z): 680.3 [M-CI]*; 491.0
[M-CI-PCy;+MeCN]*". A4nal. Calc. for C33Hs,CINOPPd+0.25CH,Cl,: C, 62.26; H, 7.85; N, 1.90.
Found: C, 62.13; H, 7.35; N, 2.22.

[Pd(PPh;)(2-F-CsH;) CH=N{2,6-'Pr,-CsH;}CI] (C29)

Yield: 85 %. Melting point: 220-223 °C (decomposes without melting). FT-IR v(C=N) 1608 cm™!; 'H
NMR (600 MHz, CDCl;, numbering as per Fig. S8b): 6 8.47 (d, “Jup = 8.0 Hz, 1H, H’), 6 7.76-7.71
(comp., 6H, PPh;), & 7.45-7.41 (comp., 3H, PPh;), & 7.39-7.34 (comp., 6H, PPh;), & 7.23-7.18 (m, 1H,
H'), 8 7.17-7.14 (comp., 2H, H!%!2), § 6.73-6.69 (m, 1H, H?), § 6.67-6.62 (t, 3Jyy = 8.4 Hz, 1H, H?), §
6.26-6.22 (m, 1H, H*), 6 3.47-3.39 (m, 2H, H'*1¢), § 1.38 (d, *Jyu = 6.8 Hz, 6H, H'>'7), 5 1.24
(d, 3Jyu = 6.8 Hz, 6H, H'>!7), 3C {'H} NMR (151 MHz, CDCl;, numbering as per Fig. S8b): 6 171.8
(d, 3Jep = 44 Hz, C7), 6 1621 (d, Jcp = 3.7 Hz, Ar-C), & 161.7 (Ar-C),
3 160.0 (Ar-C), & 1454 (Ar-C), & 140.9 (Ar-C), 6 1354 (d, Jcp = 11.8 Hz, Ar-C), 6 133.8
(dd, Jcp = 10.0 Hz, Jcp = 3.1 Hz, Ar-C), 6 133.2 (dd, Jcp = 7.0 Hz, Jcp = 5.5 Hz, Ar-C), 6 131.3
(Ar-C), 6 130.9 (d, Jcp = 2.6 Hz, Ar-C), 6 128.2 (d, Jcp = 11.0 Hz, Ar-C), 5 127.2 (Ar-C), 6 123.0
(Ar-C), 8 111.0 (d, Jcp = 19.3 Hz, Ar-C), 6 28.8 (C'416), 5 24.7 (C'>17), $ 23.2 (C'>17). 3P {IH} NMR
(121 MHz, CDCl;): 6 42.2 (s). ESI-MS (+.ve, m/z): 650.16 [M-CI]*. Anal. Calc. for C3;H3sCIFNPPd:
C, 64.73; H, 5.29; N, 2.04. Found: C, 64.29; H, 5.49; N, 1.57.

[Pd(PPh;)(2-OMe-CsH;) CH=N{2,6-'Pr,-CsH;}Cl] (C30)

Yield: 89 %. Melting point: 246-248 °C (decomposes without melting). FT-IR v(C=N) 1597 cm™'; 'H
NMR (300 MHz, CDCl;, numbering as per Fig. S8b): 6 8.55 (d, “Jyp = 7.9 Hz, 1H, H"), 6 7.80-7.67
(comp., 6H, PPh3), & 7.47-7.29 (comp., 9H, PPh;), & 7.23-7.09 (comp., 3H, H!%'L12) § 6.67
(t, Jin = 8.2 Hz, 1H, H?), 8 6.46 (d, *Jiy = 8.2 Hz, 1H, H2), § 6.07 (dd, 3y = 7.1 Hz, “iyp = 6.0 Hz,
1H, H%), 3 3.77 (s, 3H, o-methoxy Me),  3.55-3.40 (m, 2H, H'416), § 1.37 (d, %y = 6.8 Hz, 6H, H'517),
0 1.22 (d, 3Jun = 6.9 Hz, 6H, H'>17). 3C {H} NMR (101 MHz, CDCl;, numbering as per Fig. S8b): &
173.9 (d, 3Jep = 4.8 Hz, C7), 5 162.3 (Ar-C), 3 159.0 (Ar-C), & 145.9 (Ar-C), 3 141.2 (Ar-C), 3 135.9
(Ar-C), 6 135.5 (d, Jcp = 12.1 Hz, Ar-C), & 132.9 (d, Jcp = 6.2 Hz, Ar-C), 6 131.7 (Ar-C), 6 131.2
(Ar-C), 6 130.6 (Ar-C), 6 128.2 (d, Jcp = 10.8 Hz, Ar-C), 0 126.8 (Ar-C), 6 122.8 (Ar-C), & 106.6
(Ar-C), b 55.5 (o-methoxy Me), 8 28.7 (C'416), § 24.7 (C'>17), 6 23.2 (C'>17). 31P {'H} NMR (162 MHz,
CDClL;): 6 42.3 (s). ESI-MS (+.ve, m/z): 662.18 [M-CI]". Anal. Calc. for C33H3,CINOPPd: C, 65.33; H,
5.63; N, 2.01. Found: C, 65.11; H, 5.70; N, 1.60.
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Synthesis of cationic palladacycles
The synthesis of the cationic palladacycles were generally prepared by removal of the chloride ligand
using Na[B(Ary)4] as chloride abstractor. The general procedure using C11 as an example is described

below.

To a stirring solution of the neutral mononuclear palladacycle complex (80 mg, 0.142 mmol) in
dichloromethane (7 mL) was added 1.2 equivalence Na[B(Ar),] (150 mg, 0.170 mmol) dissolved in
acetonitrile (3 mL). The resulting off-white solution was stirred under an inert atmosphere for 1 hour at
room temperature. The solvent was removed in vacuo leaving an off-white oily residue, which was re-
dissolved in dichloromethane (10 mL). The sodium chloride precipitate, which formed, was filtered off
after which the solvent was removed from the filtrate in vacuo. The product was isolated as an off-white
powder by triturating the oily residue with n-hexane. Recrystallization of the palladacycle was achieved
by means of slow evaporation of a dichloromethane/n-hexane solution of the compound at room

temperature. Yield (168 mg, 83 %)

Melting point: 143 — 145 °C (decomposes without melting). FT-IR w(C=N) 1620 cm'; v([B(Ar)4]")
1352; 1274; 1117 cm™.'"H NMR (600 MHz, CDCl;, numbering as per Fig. S8¢): & 8.00 (d, “Jyp=7.2
Hz, 1H, H7), 6 7.74-7.66 (comp., 8H, B(Ar),), & 7.56-7.49 (comp.,4H, B(Ar),), 6 7.35 (t, 3Jy.y = 7.6 Hz,
1H, H?), 6 7.32-7.22 (comp., SH, H-3101L12) '§ 7 14 (m, 1H, H*), 6 4.58-4.48 (comp., 6H, PTA), 6 4.42-
4.35 (comp., 6H, PTA), 6 3.17-3.07 (m, 2H, H'*1¢), § 1.24 (d, 3Ji.u = 6.8 Hz, 6H, H'>'7), 6 1.16 (d, 3/
= 6.8 Hz, 6H, H'>'7), § 1.43 (s, 3H, H"). BC {'H} NMR (151 MHz, CDCl;, numbering as per
Fig. S8¢): 6 178.1 (d, 3Jcp =4.0 Hz, C7), 6 161.8 (q, 'Jcp = 48.2 Hz, C*), 6 152.8 (d, Jcp = 6.1, Ar-C),
5 147.5 (Ar-C), 6 143.0 (Ar-C), 6 140.8 (Ar-C), 6 136.2 (Ar-C), 6 136.1 (Ar-C),6 134.9 (br, C?), &
133.7 (d, Jep = 6.1, Ar-C), 8 132.0 (Ar-C), 8 129.0 (qq, 2Jc.r = 31.5, 3Jcp = 3.0 Hz, C??), § 128.7 (Ar-
C), 8 127.4 (Ar-C), 6 127.3 (Ar-C), 4 125.6 (Ar-C), 6 124.1 (Ar-C), & 123.8 (Ar-C), & 122.0 (Ar-C), &
121.7 (C'®), & 117.6 (sept., *Jcr = 3.8 Hz, C?), 6 73.2 (d, *Jcp = 7.4 Hz, N-CH,-N), 6 52.1 (d, 3Jcp =
14.4 Hz, N-CH,-P), 4 28.6 (C'419), § 24.4 (C'>17), 8 22.8 (C'>17), 6 0.8 (C').3'P {'H} NMR (121 MHz,
CDCly): 8 -46.9 (s). ESI-MS (+.ve, m/z): 568.18 [M]"; 527.16 [M-MeCN]"; 411.11 [M-PTA]"; 370.08
[M-PTA-MeCN]*. A4nal. Calc. for Cs5oH4BFNsPPd: C, 49.48; H, 3.45; N, 4.89. Found: C, 49.87; H,
3.24; N, 4.43.

[Pd(PTA)(MeCN)(2-CI-CsH;) CH=N{2,6-'Pr,-CsH;}]* [B(Ar),] (C12)

Yield: 81 %. Melting point: 145 — 147 °C (decomposes without melting). FT-IR v(C=N) 1611 cm’!;
V([B(Ar),]) 1353; 1272; 1110 cm™.'"H NMR (300 MHz, CDCl;, numbering as per Fig. S8¢): & 8.46
(d, “Jyp = 7.0 Hz, 1H, H7), & 7.73-7.65 (comp., 8H, B(Ar),), 6 7.56-7.50 (comp., 4H, B(Ar),),
0 7.37-7.20 (comp., SH, H>3101L12) " § 7.03-6.93 (m, 1H, H*), & 4.55-4.45 (comp., 6H, PTA),
0 4.40-4.30 (comp., 6H, PTA), 8 3.20-3.02 (m, 2H, H'*16), § 1.25 (d, 3Jiy.x = 6.8 Hz, 6H, H'>17), 5 1.19
(d, 3Jy.x = 6.8 Hz, 6H, H'>'7), § 1.40 (s, 3H, H'?). 3C {'H} NMR (75 MHz, CDCl;, numbering as per
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Fig. S8¢): 8 176.5 (d, Jep = 4.2 Hz, C7), 5 161.8 (q, Je = 50.6 Hz, C2), § 150.7 (Ar-C), 5 144.6
(Ar-C), § 143.2 (Ar-C), 5 140.8 (Ar-C), & 136.2 (Ar-C), & 134.9 (br, C21), § 134.5 (Ar-C), § 131.2
(Ar-C), § 130.1 (Ar-C), § 129.2 (Ar-C), 8 129.0 (qq, YJer = 29.9, 3Jeg = 2.7 Hz, C2), § 128.9 (Ar-C),
8 128.2 (Ar-C), § 126.5 (Ar-C), § 124.2 (Ar-C), 5 122.9 (Ar-C), § 119.3 (C'®), § 117.6 (sept., *Jor = 3.7
Hz, C2), § 73.1 (d, 3Jep = 6.8 Hz, N-CH,-N), § 52.0 (d, *Jcp = 14.1 Hz, N-CH,-P), § 28.6 (C'+16),
8 24.5 (C'517), § 22.7 (C'517), § 0.8 (C'%). 3'P {'H} NMR (121 MHz, CDCL): & -46.9 (s). ESI-MS
(+.ve, m/z): 1161.20 [2M-2MeCN+CI]*; 604.14 [M]*; 563.12 [M-MeCN]*; 447.07 [M-PTA]"; 406.04
[M-PTA-MeCN]". Anal. Cale. for Cs;HssBCIF,,NsPPd: C, 48.32; H, 3.30; N, 4.78. Found: C, 48.66;
H, 3.05; N, 4.22.

[Pd(PTA)(MeCN)(2-Br-CsH3) CH=N{2,6-'Pr,-CsH3}]* [B(Ar),]- (C13)

Yield: 80 %. Melting point: 161 — 164 °C (decomposes without melting). FT-IR v(C=N) 1612 cm™';
v([B(Ar),]) 1353; 1272; 1112 cm-."H NMR (300 MHz, CDCl;, numbering as per Fig. S8¢): & 8.47
(d, “Jy.p = 7.3 Hz, 1H, H), & 7.75-7.64 (comp., 8H, B(Ar),), & 7.56-7.49 (comp., 4H, B(Ar),), & 7.42
(d, 3Juu = 7.6 Hz, 1H, H?), & 7.37-7.23 (comp., 3H, H!*!L12) " § 7.17 (t, 3Jyn = 8.0 Hz, 1H, H?),
3 7.06-6.98 (m, 1H, H*), 6 4.58-4.42 (comp., 6H, PTA), 6 4.41-4.30 (comp., 6H, PTA), 5 3.20-3.03
(m, 2H, H'*1¢), § 1.25 (d, *Jy.q = 6.8 Hz, 6H, H'>'7), 5 1.19 (d, Jy.s = 6.7 Hz, 6H, H'>17), § 1.42 (s, 3H,
H"). BC {'H} NMR (151 MHz, CDCl;, numbering as per Fig. S8¢): 6 178.9 (d, 3Jcp = 3.9 Hz, C7),
0 161.9 (q, 'Jes = 50.6 Hz, C¥), 5 154.2 (d, Jcp = 5.7, Ar-C), 6 145.9 (Ar-C), 6 143.2 (Ar-C), & 140.8
(Ar-C), 8 135.2 (Ar-C), 6 135.1 (Ar-C), 6 134.9 (br, C?!), & 131.5 (Ar-C), 8 129.0 (qq, *Jcr = 31.2,
3Jcs = 2.7 Hz, C?2), 6 128.9 (Ar-C), 6 127.4 (Ar-C), 5 125.6 (Ar-C), 8 125.0 (Ar-C), & 124.2 (Ar-C),
0 123.8 (Ar-C), 6 122.0 (Ar-C), 8 121.9 (C'8), 6 117.6 (sept., 3Jcp = 4.3 Hz, C*), 6 73.2 (d, 3Jcp = 7.6
Hz, N-CH,-N), 6 52.1 (d, 3Jcp = 14.5 Hz, N-CH,-P), 5 28.7 (C'416),  24.5 (C'>17), 6 22.8 (C'>17), 6 0.8
(C).31P {TH} NMR (121 MHz, CDCl;): 6 -47.8 (s). ESI-MS (+.ve, m/z): 1249.10 [2M-2MeCN+CI]";
648.09 [M]*; 607.07 [M-MeCN]"; 491.02 [M-PTA]"; 449.99 [M-PTA-MeCN]*. ESI-MS (-.ve, m/z):
863.07 [B(Ar)4]". Anal. Calc. for CsoHysBBrFo,NsPPd«1CH,Cl,: C, 45.15; H, 3.16; N, 4.39. Found: C,
45.09; H, 2.88; N, 4.59.

[Pd(PTA)(MeCN)(2-F-C6H3)CH=N{2,6-iPr2-C6H3}]+ [B(Ar)4]- (C14)

Yield: 86 %. Melting point: 141 — 143 °C (decomposes without melting). FT-IR v(C=N) 1611 cm!;
V([B(Ar),]) 1353; 1272; 1111 em!. "H NMR (400 MHz, CDCl;, numbering as per Fig. S8¢): 3 8.32 (d,
4gpr = 7.6 Hz, 1H, H’), & 7.76-7.65 (comp., 8H, B(Ar),), & 7.56-7.49 (comp., 4H, B(Ar),),
d 7.43-7.21 (comp., 4H, H>1%11L12) - § 7.00-6.86 (comp., 2H, H>**#), & 4.58-4.45 (comp., 6H, PTA),
0 4.43-4.32 (comp., 6H, PTA), 8 3.17-3.03 (m, 2H, H'416), 5 1.24 (d, *Jy.u = 7.0 Hz, 6H, H'>!7), 5 1.18
(d, 3Jun = 7.0 Hz, 6H, H'>17), 5 1.44 (s, 3H, H"). 13C {'H} NMR (101 MHz, CDCl;, numbering as per
Fig. S8¢): 6 172.8 (d, 3Jcp = 4.0 Hz, C7), 6 163.2 (Ar-C), 3 161.8 (q, 'Jc.g = 51.1 Hz, C?), 5 160.6
(Ar-C), 6 153.9 (d, Jop = 6.3, Ar-C), & 143.2 (Ar-C), & 140.8 (Ar-C), 6 136.2 (dd, Jcp = 8.3, 5.7 Hz,
Ar-C), 8 134.9 (br, C?"), 6 131.8 (dd, Jcp = 11.6, 3.3 Hz, Ar-C), 6 129.0 (qq, 2Jcr = 31.4,3Jcp = 3.0
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Hz, C2), § 128.8 (Ar-C), 8 128.7 (Ar-C), & 126.1 (Ar-C), & 124.1 (Ar-C), § 123.3 (Ar-C), & 121.9
(Ar-C), & 120.0 (C'8), 5 117.6 (sept., *Jer = 3.8 Hz, C), § 172.8 (d, Jop = 19.3 Hz, Ar-C), § 73.1
(d, 3Jcp = 7.6 Hz, N-CH,-N), § 52.2 (d, Jcp = 14.5 Hz, N-CH,-P), 5 28.6 (C!+16), § 24.4 (C'517), § 22.8
(C1517), § 0.8 (C'9). 3P {'H} NMR (162 MHz, CDCL): & -46.3 (s). ESI-MS (+.ve, m/z): 1127.25
[2M-2MeCN+CI]*; 586.17 [M]*; 545.15 [M-MeCNJ*; 429.10 [M-PTAJ*; 388.07 [M-PTA-MeCN]".
Anal. Calc. for Cs,H,sBF,sNsPPd: C, 48.86; H, 3.34; N, 4.83. Found: C, 49.25; H, 3.18; N, 4.34.

[Pd(PTA)(MeCN)(2-F-CsH;) CH=N{2,6-'Pr-CsH;}]* [B(Ar)4] (C15)

Yield: 85 %. Melting point: 155 — 157 °C (decomposes without melting). FT-IR v(C=N) 1605 cm’!;
V([B(Ar),4]) 1352;1273; 1112 cm!. 'TH NMR (400 MHz, CDC]l;, numbering as per Fig. S8¢): 6 8.38 (d,
up = 7.7 Hz, 1H, H7), 8 7.75-7.64 (comp., 8H, B(Ar),), & 7.56-7.48 (comp., 4H, B(Ar),),
8 7.35-7.19 (comp., 4H, H>101L12) 5 6.75 (d, 3Jun = 8.5 Hz, 1H, H?), & 6.68-6.63 (m, 1H, H*),
o 4.57-4.47 (comp., 6H, PTA), o 4.40-4.35 (comp., 6H, PTA), 6 3.82 (s, 3H, o-methoxy Me),
0 3.20-3.07 (m, 2H, H'*1¢), § 1.24 (d, 3Ji.y = 6.8 Hz, 6H, H'>17), 6 1.17 (d, *Ji.y = 6.8 Hz, 6H, H!>17),
o 1.41 (s, 3H, HY). BC {'H} NMR (75 MHz, CDCl;, numbering as per Fig. S8¢c): & 174.8
(d, 3Jcp = 4.0 Hz, C7), 3 161.8 (q, 'Jes = 50.0 Hz, C*), § 160.9 (Ar-C), 6 154.7 (Ar-C), & 143.7
(Ar-C), & 141.2 (Ar-C), 8 135.9 (Ar-C), 6 135.1 (Ar-C), 6 134.9 (br, C?'), 6 130.1 (Ar-C), & 129.0
(99, 2Jcr = 31.6, 3Jcp = 2.9 Hz, C??), 6 128.4 (Ar-C), § 128.2 (Ar-C), 8 126.5 (Ar-C), 8 123.9 (Ar-C),
0 122.9 (Ar-C), 6 121.6 (Ar-C), 5 119.3 (C'®), 8 117.6 (sept., *Jcr = 4.1 Hz, C»), 5 109.9 (Ar-C), 5 73.2
(d, *Jcp = 7.7 Hz, N-CH,-N), 6 56.0 (0-methoxy Me), & 52.1 (d, 3Jcp = 14.4 Hz, N-CH,-P), 3 28.5
(C1%16), 8 24.5 (C'>17), § 22.8 (C'>17), 5 0.8 (C'). 3P {'H} NMR (121 MHz, CDCl;): § -48.1 (s).
YF {TH} NMR (282 MHz, CDCl;): 6 -62.6 (s). ESI-MS (+.ve, m/z): 1151.30 [2M-2MeCN+Cl]*; 598.19
[M]; 557.17 [M-MeCN]*; 441.12 [M-PTA]"; 400.09 [M-PTA-MeCN]'. Anal. Calc. for
CsoHs1BF,4NsOPPde1CH,Cl,: C, 47.35; H, 3.45; N, 4.53. Found: C, 47.62; H, 3.27; N, 4.59.

[Pd(PCy3)(MeCN)(CsH,)CH=N{2,6-"Pr>-Cst3}]" [B(Ar),] (C21)

Yield: 85 %. Melting point: 168 — 169 °C (decomposes without melting). FT-IR v(C=N) 1615 cm™';
V([B(Ar),]) 1354; 1271; 1113 em'. 'TH NMR (400 MHz, CDCl;, numbering as per Fig. S8¢): 6 8.03 (d,
“up = 6.6 Hz, 1H, H"), 6 7.74-7.65 (comp., 8H, B(Ar),), & 7.55-7.50 (comp., 4H, B(Ar),),
8 7.50-7.46 (m, 1H, H'), & 7.33-7.19 (comp., 6H, Ar-H), 6 3.35-3.21 (m, 2H, H'*!¢), § 2.25-2.09
(comp., 4H, P(Cy)3), 6 2.02-1.90 (comp., 6H, P(Cy);), 6 1.89-1.79 (comp., 6H, P(Cy);), 6 1.78-1.68
(comp., 3H, P(Cy)3), 8 1.67-1.52 (comp., 7H, P(Cy)5), 8 1.31-1.08 (comp., 19H, P(Cy); & H'>'7), § 1.39
(s, 3H, H'?). 3C {'H} NMR (101 MHz, CDCl;, numbering as per Fig. S8¢): 6 177.8 (d, *Jcp = 4.0 Hz,
C7), 6 161.8 (q, 'Jes = 50.6 Hz, C?°), § 153.0 (Ar-C), & 147.9 (Ar-C), 8 143.9 (Ar-C), 6 141.1 (Ar-C),
d 137.5 (d, Jep = 5.7 Hz, Ar-C), 8 134.9 (br, C*), 3 132.5 (d, Jcp = 3.8 Hz, Ar-C), 3 129.0
(qq, 2Jcr = 31.3, 3Jcp = 2.9 Hz, C??), 6 128.8 (Ar-C), 6 128.5 (Ar-C), 8 126.6 (Ar-C), 8 126.1 (Ar-C),
0 124.2 (Ar-C), 6 123.3 (Ar-C), 8 120.6 (C'®), 6 117.6 (sept., *Jcr = 3.9 Hz, C?), 6 34.8 (d, 'Jcp=21.2
Hz, PCy3), 6 30.4 (PCys3), 6 28.7 (PCys3), 8 27.8 (d, 2Jcp = 10.4 Hz, PCyj3), 6 26.0 (C'419), § 24.4 (C'517),
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§22.7 (C1517), § 0.9 (C'%). 3P {{H} NMR (121 MHz, CDCL): & 47.7 (s). ESI-MS (+.ve, m/z): 650.3
[M-MeCNJ*; 411.1 [M-P(Cy);]". ESI-MS (-ve, m/z): 863.07 [B(Ar),]. Anal. Calc. for
C71H7oBF,,N,PPd+0.5CH,Cly: C, 53.74; H, 4.48; N, 1.75. Found: C, 53.61; H, 4.82; N, 1.30.

[Pd(PCy;)(MeCN)(2-CI-CsH3) CH=N{2,6-'Pr-CsH3}]" [B(Ar),]- (C22)

Yield: 85 %. Melting point: 160 — 163 °C (decomposes without melting). FT-IR v(C=N) 1616 cm’!;
V([B(Ar),4]) 1354; 1276; 1116 cm™. 'TH NMR (300 MHz, CDC]l;, numbering as per Fig. S8¢): 6 8.52 (d,
4qp = 6.6 Hz, 1H, H7), 8 7.74-7.65 (comp., 8H, B(Ar),), & 7.56-7.48 (comp., 4H, B(Ar),),
8 7.36-7.24 (comp., 3H, Ar-H), 6 7.22-7.05 (comp., 3H, Ar-H), 6 3.36-3.17 (m, 2H, H'#19), § 2.25-2.04
(comp., 5H, P(Cy);), & 2.02-1.47 (comp., 21H, P(Cy)3), & 1.34-1.03 (comp., 19H, P(Cy); & H!>!7),
d 1.40 (s, 3H, H?®). BC {'H} NMR (75 MHz, CDCl;, numbering as per Fig. S8¢): 6 176.2
(d, 3Jcp = 3.9 Hz, C7), 5 161.8 (q, 'Jcp = 50.4 Hz, C?), § 154.6 (Ar-C), 6 144.7 (Ar-C), & 144.1
(Ar-C), 6 141.0 (Ar-C), 8 136.0 (d, Jcp = 5.2 Hz, Ar-C), 6 135.3 (Ar-C), & 134.9 (br, C?!), 5 133.6
(d, Jep = 4.0 Hz, Ar-C), 8 130.1 (Ar-C), 6 129.0 (qq, 2Jcr = 31.5, 3Jcs = 3.3 Hz, C??), § 128.7 (Ar-C),
0 127.6 (Ar-C), 6 126.5 (Ar-C), 8 124.3 (Ar-C), 6 122.9 (Ar-C), 6 119.3 (C'8), 6 117.6 (sept., *Jcr= 3.7
Hz, C?), 8 34.8 (d, 'Jcp = 21.2 Hz, PCy;), & 30.4 (PCy;), 6 28.8 (PCys), 6 27.7 (d, 2Jcp = 11.2 Hz,
PCys;), 8 26.0 (C'416), § 24.5 (C'>17), 6 22.7 (C'>17), 5 0.9 (C"). 3P {'H} NMR (121 MHz, CDCl;):
0 47.5 (s). ESI-MS (+.ve, m/z): 684.27 [M-MeCN]". Anal. Calc. for C;HgBCIF,4N,PPd*1CH,Cl,: C,
51.63; H,4.27; N, 1.67. Found: C, 51.29; H, 4.26; N, 1.01.

[Pd(PCy;)(MeCN)(2-Br-CsH3) CH=N{2,6-'Pry-CsH3}]* [B(Ar),]- (C23)

Yield: 83 %. Melting point: 168 — 170 °C (decomposes without melting). FT-IR vw(C=N) 1613 cm™';
v([B(Ar),]) 1353; 1275; 1115 em'. "TH NMR (300 MHz, CDCl;, numbering as per Fig. S8¢): 6 8.53 (d,
Uup = 6.7 Hz, 1H, H"), 6 7.76-7.63 (comp., 8H, B(Ar),), & 7.57-7.48 (comp., 4H, B(Ar),),
0 7.42-7.22 (comp., 4H, Ar-H), 6 7.17-7.03 (comp., 2H, Ar-H), 6 3.36-3.16 (m, 2H, H'*16), 5 2.23-1.46
(comp., 26H, P(Cy);), 6 1.35-1.03 (comp., 19H, P(Cy); & H'>'7), § 1.39 (s, 3H, H"). 13C {H} NMR
(75 MHz, CDCl;, numbering as per Fig. S8¢): & 178.5 (d, 3Jc.p = 3.6 Hz, C7), 6 161.8 (q, Jep = 52.0
Hz, C?), 5 154.8 (Ar-C), 6 146.0 (Ar-C), 5 144.1 (Ar-C), 6 141.0 (Ar-C), 8 136.7 (d, Jcp = 5.4 Hz,
Ar-C), 8 134.9 (br, C?'), 6 133.7 (d, Jcp = 4.0 Hz, Ar-C), 6 130.9 (Ar-C), & 130.1 (Ar-C), 4 129.0
(99, 2Jcr = 32.0, 3Jcp = 2.5 Hz, C??), 6 128.8 (Ar-C), & 126.5 (Ar-C), & 124.3 (Ar-C), 6 124.2 (Ar-C),
5 122.9 (Ar-C), 6 119.3 (C'®), 6 117.6 (sept., 3Jcr = 3.8 Hz, C»), 6 34.8 (d, 'Jcp = 22.1 Hz, PCy;),
3 30.4 (PCys), 6 28.8 (PCys3), 6 27.7 (d, 2Jcp = 11.3 Hz, PCyj3), 6 26.0 (C'+19), 5 24.5 (C'>17), § 22.7
(C1517), 8 0.9 (C"). 3P {'H} NMR (121 MHz, CDCl3): 6 47.3 (s). ESI-MS (+.ve, m/z): 730.2
[M-MeCN]J*; 491.0 [M-P(Cy);]". ESI-MS (-.ve, m/z): 863.0 [B(Ar)]. Anal. Calc. for
C7HgBBrF,N,PPd*2CH,Cl,: C, 48.60; H, 4.08; N, 1.55. Found: C, 48.31; H, 4.40; N, 1.35.
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[Pd(PCys3)(MeCN)(2-F-CsH3) CH=N{2,6-'Pro-CsH;}]" [B(Ar),] (C24)

Yield: 86 %. Melting point: 143 — 146 °C (decomposes without melting). FT-IR v(C=N) 1611 cm’!;
V([B(Ar),4]) 1353; 1276; 1119 cm™."H NMR (600 MHz, CDCl;, numbering as per Fig. S8¢): 5 8.63 (d,
4Jup= 6.7 Hz, 1H, H’), 6 7.74-7.60 (comp., 8H, B(Ar),), & 7.54-7.46 (comp., 4H, B(Ar),), 8 7.33-7.20
(comp., 4H, Ar-H), 6 6.99-6.93 (m, 1H, Ar-H), & 6.92-6.86 (m, 1H, H'), & 3.29-3.17
(m, 2H, H'*1), § 2.21-2.07 (comp., 4H, P(Cy);), 6 1.98-1.87 (comp., 6H, P(Cy);), & 1.87-1.77
(comp., 6H, P(Cy);), & 1.75-1.66 (comp., 3H, P(Cy);), 6 1.64-1.49 (comp., 6H, P(Cy);), 6 1.31-1.07
(comp., 20H, P(Cy); & H'>17), 6 1.38 (s, 3H, H'). 1*C {'H} NMR (75 MHz, CDCl;, numbering as per
Fig. S8¢): 6 172.5 (d, *Jcp =4.1 Hz, C7), 3 163.3 (Ar-C), 6 161.8 (q, *Jc.g = 50.4 Hz, C?), § 159.8 (Ar-
C), 8 154.2 (Ar-C), o 144.1 (Ar-C), 6 141.1 (Ar-C), 6 134.9 (br, C?!), 5 133.2 (Ar-C), 6 130.1
(Ar-C), 6 129.0 (qq, 2Jcr = 31.6, 3Jcg =2.9 Hz, C??), § 128.7 (Ar-C), & 126.5 (Ar-C), 6 124.2 (Ar-C),
0 122.9 (Ar-C), 6 119.3 (C'®), 6 117.6 (sept., Jcr = 4.0 Hz, C?®), 5 113.8 (Ar-C), 4 113.6 (Ar-C), 5 34.9
(d, 'Jep=22.1 Hz, PCy;), 6 30.4 (PCy3), 6 28.7 (PCys3), 6 27.7 (d, 2Jcp = 11.4 Hz, PCy;), 8 26.0 (C'419),
0 24.4 (C1>17), § 22.7 (C'517), 8 0.9 (C"). 3P {H} NMR (121 MHz, CDCl;): & 48.2 (s). ESI-MS
(+.ve, m/z): 668.30 [M-MeCN]*. 4nal. Calc. for C7;HgBF,sN,PPd+0.5CH,Cl,: C, 53.14; H, 4.37; N,
1.73. Found: C, 52.83; H, 4.00; N, 1.95.

[Pd(PCy;)(MeCN)(2-OMe-CsH;) CH=N{2,6-'Pry-CsH;3}]* [B(Ar),]- (C25)

Yield: 82 %. Melting point: 147 — 150 °C (decomposes without melting). FT-IR v(C=N) 1604 cm™';
V([B(Ar),4]) 1352;1273; 1120 cm™. "H NMR (300 MHz, CDCl;, numbering as per Fig. S8c¢): & 8.44 (d,
Upp = 6.9 Hz, 1H, H"), 6 7.74-7.65 (comp., 8H, B(Ar),), & 7.55-7.48 (comp., 4H, B(Ar),),
o 7.33-7.17 (comp., 4H, Ar-H), & 6.79-6.65 (comp., 2H, Ar-H), 6 3.81 (s, 3H, o-methoxy Me),
0 3.29-3.21 (m, 2H, H'%19), § 2.25-2.05 (comp., 4H, P(Cy)3), & 2.02-1.46 (comp., 21H, P(Cy);),
d 1.34-1.05 (comp., 20H, P(Cy); & H'>'7), 6 1.39 (s, 3H, H"). 3C {'H} NMR (75 MHz, CDCls,
numbering as per Fig. S8¢): 6 174.5 (d, 3Jcp = 3.7 Hz, C7), 6 161.8 (q, *Jc.s = 50.6 Hz, C*), 6 160.4
(Ar-C), & 155.2 (Ar-C), 3 144.6 (Ar-C), 6 141.4 (Ar-C), 6 135.5 (Ar-C), & 134.9 (br, C?!), 6 134.5
(d, Jep = 4.2 Hz, Ar-C), 6 130.1 (Ar-C), 6 129.0 (qq, 2Jc.r = 30.9, 3Jc3 =2.4 Hz, C??), 6 128.2 (Ar-C),
0 126.5 (Ar-C), 8 124.1 (Ar-C), 8 122.9 (Ar-C), & 117.6 (sept., 3Jcr = 4.0 Hz, C??), 5 109.1 (C'8), 8 55.9
(methoxy C), 8 34.8 (d, 'Jc.p = 21.3 Hz, PCy3), 6 30.4 (PCys3), 6 28.6 (PCy3), 6 27.7 (d, 2Jc.p = 10.6 Hz,
PCys3), 8 26.0 (C'416), § 24.5 (C'>17), 6 22.7 (C'>17), § 0.9 (C'°). 3'P {!H} NMR (121 MHz, CDCl,):
0 46.7 (s). ESI-MS (+.ve, m/z): 680.3 [M-MeCN]"; 441.1 [M-P(Cy);]". ESI-MS (-.ve, m/z): 863.0
[B(Ar)4]". Anal. Calc. for C;,H,,BF,4N,OPPd«0.5CH,Cl,: C, 53.49; H, 4.52; N, 1.72. Found: C, 53.14;
H, 4.71; N, 1.29.

[Pd(PPh3)(MeCN)(2-F-CsH;) CH=N{2,6-Pr,-CsH;}]* [B(Ar) ] (C34)

Yield: 91 %. Melting point: 134 — 137 °C (decomposes without melting). FT-IR v(C=N) 1612 cm’!;
V([B(Ar),4]) 1353; 1274; 1119 cm™!. 'H NMR (600 MHz, CDC]l;, numbering as per Fig. S8c¢): 6 8.44 (d,
4Jup = 7.6 Hz, 1H, H"), 6 7.72-7.68 (comp., 8H, B(Ar),), 6 7.67-7.62 (comp., 6H, PPh;), 6 7.53-7.48
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(comp., 7H, PPh; & B(Ar),), 6 7.47-7.40 (comp., 6H, PPh;), 8 7.28-7.19 (comp., 3H, H!®I1112)
5 6.84-6.74 (comp., 2H, H23), § 6.25-6.20 (m, 1H, H*), & 3.36-3.27 (m, 2H, H4I6), § 1.29
(d, 3Juy = 6.8 Hz, 6H, H'>17), 6 1.27 (d, 3Jy.y = 6.9 Hz, 6H, H'>17), § 1.05 (s, 3H, H'?). BC {'H} NMR
(151 MHz, CDCls, numbering as per Fig. S8¢): 6 173.2 (d, 3Jcp =4.2 Hz, C7), 8 162.2 (Ar-C), 6 161.9
(9, Jes = 49.8 Hz, C?), 6 160.4 (Ar-C), 5 155.2 (Ar-C), 6 144.2 (Ar-C), & 140.7 (Ar-C), & 134.9
(br, C?"), & 134.8 (Ar-C), & 134.7 (Ar-C), 6 132.6 (Ar-C), 6 129.4 (Ar-C), & 129.2 (Ar-C), 6 129.0
(99, 2Jcr =31.6, *Jep = 2.4 Hz, C??), 6 128.7 (Ar-C), 8 128.6 (Ar-C), 6 128.3 (Ar-C), 3 127.5 (Ar-C),
0 125.7 (Ar-C), 6 124.0 (Ar-C), 8 123.9 (Ar-C), 6 122.1 (Ar-C), 8 119.7 (C'8), 6 117.7 (sept., *Jer=4.1
Hz, C*), 6 113.7 (Ar-C), 6 113.6 (Ar-C), & 28.9 (C'*16), 5 24.4 (C'>17), 6 22.9 (C'>17), 5 0.4 (CP). 3'P
{'H} NMR (121 MHz, CDCly): & 41.2 (s). ESI-MS (+.ve, m/z): 650.1610 [M-MeCN]*. ESI-MS
(-.ve, m/z): 863.0735 [B(Ar)4]". Anal. Calc. for C;Hs;BF,sN,PPd+0.5CH,Cl,: C, 53.75; H, 3.28; N,
1.75. Found: C, 53.59; H, 3.41; N, 1.23.

[Pd(PPh3)(MeCN)(2-OMe-CsHs;) CH=N{2,6-Pr,-C;H3} ]+ [B(Ar),]- (C35)

Yield: 88 %. Melting point: 158 — 160 °C (decomposes without melting). FT-IR vw(C=N) 1604 cm-';
v([B(Ar),]) 1353; 1274; 1118 ecm'. "TH NMR (400 MHz, CDCl;, numbering as per Fig. S8¢): 6 8.52 (d,
4Jup = 8.0 Hz, 1H, H’), 6 7.74-7.60 (comp., 15H, B(Ar)4 & PPh;), 6 7.54-7.47 (comp., 6H, B(Ar),), &
7.46-7.39 (comp., 6H, PPh3), 6 7.25-7.16 (comp., 3H, H'*!1:12) ' § 6.74 (t, 3Jy.u = 8.2 Hz, 1H, H?), 3 6.57
(d, 3Jun = 8.5 Hz, 1H, H?), 4 6.05-5.98 (m, 1H, H*), 5 3.79 (s, 3H, o-methoxy Me), 6 3.49-3.30 (m, 2H,
H416) 5 1.28 (d, 3Jum = 6.7 Hz, 6H, H'>'"), & 1.26 (d, *Jun = 6.6 Hz, 6H, H'>'7), 5 1.04
(s, 3H, H'). BC {'H} NMR (151 MHz, CDCl;, numbering as per Fig. S8¢): 6 175.1 (d, Jcp = 4.5 Hz,
C7), 6 161.9 (q, 'Jes = 50.2 Hz, C?9), 6 160.2 (Ar-C), & 156.0 (Ar-C), 3 144.6 (Ar-C), 5 140.9 (Ar-C),
0 135.6 (Ar-C), 4 134.9 (br, C?!), 8 134.9 (Ar-C), 6 134.8 (Ar-C), 6 134.7 (Ar-C), 6 132.3 (d, Jcp = 6.6,
Ar-C), 6 131.4 (Ar-C), & 131.3 (Ar-C), 8 129.3 (Ar-C), & 129.2 (Ar-C), & 129.1 (Ar-C), 5 129.0
(99, 2Jcr = 32.5, 3Jcp = 2.9 Hz, C??), 6 128.8 (Ar-C), 6 128.2 (Ar-C), 8 127.4 (Ar-C), 8 125.6 (Ar-C),
5 123.8 (Ar-C), 6 123.7 (Ar-C), 6 122.0 (Ar-C), 6 119.3 (C'®), 6 117.6 (sept., Jcr = 3.9 Hz, C?),
3 109.0 (Ar-C), & 55.8 (o-methoxy Me), 6 28.7 (C'416), § 24.3 (C'>17), 5 22.8 (C!>17), § 0.3 (CP).
3P {TH} NMR (162 MHz, CDCl;): 6 41.1 (s). ESI-MS (+.ve, m/z): 662.1820 [M-MeCN]". Anal. Calc.
for C;,Hs4BF,4N,OPPd+«0.5CH,Cl,: C, 54.09; H, 3.44; N, 1.74. Found: C, 53.89; H, 3.20; N, 1.48.
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Crystallography

Single crystals suitable for X-ray diffraction analysis of complexes C15 and C25 were isolated by slow diffusion
of hexane into a dichloromethane solution at room temperature which resulted in the formation of colourless
crystals. Single X-ray diffraction intensity data were collected on a Bruker SMART Apex 2 diffractometer
equipped with a CCD area detector! using graphite monochromated Mo-Ka radiation (A = 0.71073 A). Data
collection, reduction and refinement were performed using SMART and SAINT software.? Absorption
corrections® and other systematic errors were accounted for using SADABS.* All structures were solved by Direct
Methods using SHELXS-2013% and refined using SHELXL-2016.6 The program X-Seed” was used as a graphical
interface for the SHELX program. All non-hydrogen atoms were refined anisotropically. High resolution
molecular diagrams were produced using the program POV-Ray.? CCDC 1568394 for complex C15 and CCDC
1568393 for complex C25 contains the supplementary crystallographic data for this paper. This data can be
obtained free of charge from The Cambridge  Crystallographic = Data  Centre via

www.ccdc.cam.ac.uk/data_request/cif.

Fig. S49: Molecular structure of solvated complex C15 with atomic numbering, drawn at 50% probability ellipsoids. All
hydrogen atoms are omitted for clarity. Some of the trifluoromethyl substituents are disordered due to fluxional motion the
fluoride atoms. Dichloromethane solvent is also disordered over two positions.
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Fig. S50: Molecular structure of complex C25 with atomic numbering, drawn at 50% probability ellipsoids. All hydrogen
atoms are omitted for clarity.

Table S1: Crystallographic data and structure refinement parameters for cationic palladacycles C15 and C25.

Complex

Parameter

C15 C25
Empirical formula C¢1Hs3BCLF4NsOPPd C;,H7,BF,4,N,OPPd
Mr (g/mol) 1547.16 1585.50
Crystal system Orthorhombic Triclinic
Space group P2(1)2(1)2(1) P-1
a(A) 13.9241(13) 10.0762(10)
b(A) 18.1629(17) 18.3919(19)
c(R) 25.815(2) 19.844(2)
a (deg) 90 101.149(1)
p (deg) 90 92.522(1)
? (deg) 90 92.592(1)
Crystal dimension (mm) 0.33 x0.34 x 0.40 0.15x0.19 x 0.22
Volume (A% 6528.7(11) 3599.1(6)
Z 4 2
Deaic (g/cm?) 1.574 1.463
F(000) 3112.0 1616
% (MoK,) (A) 0.71073 0.71073
Temperature (K) 100 100
260 max (deg) 28.272 28.482
absorption corrections applied (mm)  0.504 0.387
Goodness-of-fit on F? 1.019 1.039
Final R, indices [I>26(])] 0.0331 0.0383
wR, (all reflections) 0.0767 0.0941
Flack x parameter 0.084(8) -
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Table S2: Selected bond lengths (A), bond angles (°) and torsion angle (°) as determined for cationic palladacycles C15 and
C25.¢

Complex

C15 C25
Bond lengths
Pd-C1 2.008(3) 2.001(2)
Pd-N1 2.095(3) 2.0995(17)
Pd-N2 2.090(3) 2.1078(18)
Pd-P1 2.2421(10) 2.3086(7)
N1-C8 1.283(4) 1.283(3)
N1-C9 1.442(4) 1.437(3)
Co6-C8 1.432(5) 1.440(3)
01-C5 1.358(4) 1.358(3)
Bond angles
N1-Pd-N2 90.03(11) 89.62(7)
N1-Pd-C1 81.76(11) 80.75(7)
C1-Pd-P1 94.58(9) 98.58(6)
P1-Pd-N2 93.72(8) 92.59(5)
Torsion angles
C8-N1-C9-C10 -88.0(4) -108.2(2)

@ Atoms are labelled as per numbering given in Fig. S49 and Fig. S50.
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