Electronic Supplementary Information

Simultaneous hetero-atom doping and foreign-thiolate exchanging on the Au₂₅(SR)₁₈ nanocluster

Xiao Wei,^a Xi Kang,^a Shuxin Wang,^{*,a} Manzhou Zhu^{*,a}

Experimental Details

1. Chemicals: Tetrachloroauric(III) acid (HAuCl₄·3H₂O, > 99.99% gold basis), 4mercaptobenzoic acid (C₇H₆O₂S, > 90%), silver nitrate (AgNO₃, 99.85%, metal basis), 2phenylethanethiol (PhC₂H₄SH, > 98%), 4-bromothiophenol (BrC₆H₄SH, > 97%), 4-Aminothiophenol (C₆H₇NS, > 98%), sodium borohydride (NaBH₄, > 98%), tetraoctylammonium bromide (TOAB, 98%), ethanethiol (C₂H₅SH, 98%) were gained from ACROS Organic. Methanol (HPLC grade, \geq 99.9%), tetrahydrofuran (HPLC grade, \geq 99.9%), acetonitrile (HPLC grade, \geq 99.9%) and methylene chloride (HPLC grade, \geq 99.9%) were gained from Sigma-Aldrich. Pure water was purchased from Wahaha Co., LTD.

2. Synthesis of $Au_{25}(SC_2H_4Ph)_{18}$ TOA⁺ nanoclusters

HAuCl₄·3H₂O (0.2 g/mL, 0.8 mL) and TOAB (0.254 g, 0.47 mmol) was dissolved in 14 mL of tetrahydrofuran in a 50 mL tri-neck round bottom flask. After ~15 min stirring (1500 rpm), phase transfer was completed and the color of the solution changed from yellow to red. Then, PhCH₂CH₂SH (0.28 mL, 3 equivalents per the moles of the gold) was added to the solution under a stirring speed of ~1500 rpm. After the solution turned to clear (20 minutes), an aqueous solution of NaBH₄ (0.1550 g, 4 mmol) with ice water (5 mL) was quickly added to the above solution. The reaction was allowed to proceed about 5 hours. After that, the aqueous layer (at the bottom of the flask) was removed, and the tetrahydrofuran solution was centrifuged. Then the solution layer was raised and dried by rotavaporation. Methanol (20 mL) was added to remove the by-products and such wash/centrifugation cycle was repeated for 3 times. Then 10 mL of acetonitrile was used to extract pure Au₂₅(SC₂H₄Ph)-TOA⁺ nanocluster.

3. Synthesis of Ag-SC₂H₅ complexes

30 mg of silver nitrate was added in 7 mL of centrifuge tube which contained 2 mL of methanol. The ultrasonic dissolving method was used to dissolve the AgNO₃. Then, C_2H_5SH was added to the above solution and reacted for 5 minutes. The white solution was centrifuged and the solution layer was removed. Methanol (5 mL) was added in to remove needless ethanethiol and such wash/centrifugation cycle was repeated for 3 times.

4. Synthesis of Ag-SC₆H₄Br, AgS-C₆H₄COOH, AgS-C₆H₄NH₂ complexes This synthesis method is similar to the Ag-SC₂H_{5.}

5. Details of the reaction tracking with UV-Vis and matrix-assisted laser desorption ionizationtime of flight mass spectrometry (MALDI-MS for short)

UV-Vis absorption spectra were obtained using an Agilent 8453 instrument, and solution samples were prepared using CH₂Cl₂ as the solvent. MALDI-MS was recorded on a Bruker Autoflex III

smart beam instrument, using trans-2-[3-(4-tert-butylphenyl)-2-methyl-2-propenylidene] malononitrile (DCTB) as a matrix. 5 mg of $Au_{25}(SC_2H_4Ph)_{18}$ TOA⁺ was added in a 50 mL trineck round bottom flask and dissolved in 20 mL of CH₂Cl₂. Then 5 mg of Ag-SR was dissolved by 5 mL of CH₂Cl₂ and straw dropped to the above solution. The UV-vis and MALDI-MS of the reaction were monitored until the absorptions of the products became steady.

6. The purity of the as-prepared Au clusters was analyzed by size exclusion chromatography (SEC) on an Agilent 1200 Infinity Series using a PLgel column (particle size: 3 μ m, pore diameter: 100 Å). A diode array detector (DAD) in situ monitors the optical absorption spectrum (210-850 nm range) of the eluted solution. The purity of the clusters can be verified by comparing the UV-vis spectra at different times of the peak (e.g. peak point, and left and right points at half height).

Fig. S1 HPLC results of the product of the M_{25} alloy nanoclusters. Insets: UV-vis spectra and ESI-MS results of the product in the three points.

Fig. S2 Time-dependent MALDI-MS spectra (in the 650-900 Da range) of the metal/ligandexchange process of doping $Au_{25}(PET)_{18}$ with Ag-SC₂H₅ complexes. X-axis represents the mass range and the Y-axis represents the intensity of the peaks.

Fig. S3 MALDI-MS spectra of $Au_{25}(PET)_{18-n}(SC_2H_5)_n$ corresponding to stage 5 (where, n represents the number of S-C₂H₅, EM for short). The specific m/z and intensity of $Au_{25}(PET)_{18-n}(SC_2H_5)_n$ can be found in Tables S1 and S2, respectively.

Fig. S4 MALDI-MS spectra of $Au_{24}Ag_1(PET)_{18-n}(SC_2H_5)_n$ corresponding to stage 5. The specific m/z and intensity of $Au_{24}Ag_1(PET)_{18-n}(SC_2H_5)_n$ can be found in Tables S1 and S2, respectively.

Fig. S5 MALDI-MS spectra of $Au_{23}Ag_2(PET)_{18-n}(SC_2H_5)_n$ corresponding to stage 5. The specific m/z and intensity of $Au_{23}Ag_2(PET)_{18-n}(SC_2H_5)_n$ can be found in Tables S1 and S2, respectively.

Fig. S6 MALDI-MS spectra of $Au_{22}Ag_3(PET)_{18-n}(SC_2H_5)_n$ corresponding to stage 5. The specific m/z and intensity of $Au_{22}Ag_3(PET)_{18-n}(SC_2H_5)_n$ can be found in Tables S1 and S2, respectively.

Fig. S7 MALDI-MS spectra of $Au_{21}Ag_4(PET)_{18-n}(SC_2H_5)_n$ corresponding to stage 6. The specific m/z and intensity of $Au_{21}Ag_4(PET)_{18-n}(SC_2H_5)_n$ can be found in Tables S1 and S2, respectively.

Fig. S8 MALDI-MS spectra of $Au_{25}(PET)_{18-n}(SPhBr)_n$ corresponding to stage 2 (where n represents the number of S-PhBr). The specific m/z and intensity of $Au_{25}(PET)_{18-n}(SPhBr)_n$ can be found in Tables S3 and S4, respectively.

Fig. S9 MALDI-MS spectra of $Au_{24}Ag_1(PET)_{18-n}(SPhBr)_n$ corresponding to stage 7. The specific m/z and intensity of $Au_{24}Ag_1(PET)_{18-n}(SPhBr)_n$ can be found in Tables S3 and S4, respectively.

Fig. S10 MALDI-MS spectra of $Au_{23}Ag_2(PET)_{18-n}(SPhBr)_n$ corresponding to stage 7. The specific m/z and intensity of $Au_{23}Ag_2(PET)_{18-n}(SPhBr)_n$ can be found in Tables S3 and S4, respectively.

Fig. S11 MALDI-MS spectra of $Au_{22}Ag_3(PET)_{18-n}(SPhBr)_n$ corresponding to stage 7. The specific m/z and intensity of $Au_{22}Ag_3(PET)_{18-n}(SPhBr)_n$ can be found in Tables S3 and S4, respectively.

Fig. S12 MALDI-MS spectra of $Au_{21}Ag_4(PET)_{18-n}(SPhBr)_n$ corresponding to stage 7. The specific m/z and intensity of $Au_{21}Ag_4(PET)_{18-n}(SPhBr)_n$ can be found in Tables S3 and S4, respectively.

m/z (Da)	nanoclusters		
7392	Au ₂₅ (PET) ₁₈		
7316	Au ₂₅ (PET) ₁₇ (EM) ₁		
7240	Au ₂₅ (PET) ₁₆ (EM) ₂		
7303	Au ₂₄ Ag ₁ (PET) ₁₈		
7227	Au ₂₄ Ag ₁ (PET) ₁₇ (EM) ₁		
7151	Au ₂₄ Ag ₁ (PET) ₁₆ (EM) ₂		
7075	Au ₂₄ Ag ₁ (PET) ₁₅ (EM) ₃		
6999	Au ₂₄ Ag ₁ (PET) ₁₄ (EM) ₄		
7214	Au ₂₃ Ag ₂ (PET) ₁₈		
7138	Au ₂₃ Ag ₂ (PET) ₁₇ (EM) ₁		
7062	Au ₂₃ Ag ₂ (PET) ₁₆ (EM) ₂		
6986	Au ₂₃ Ag ₂ (PET) ₁₅ (EM) ₃		
6910	Au ₂₃ Ag ₂ (PET) ₁₄ (EM) ₄		
6834	Au ₂₃ Ag ₂ (PET) ₁₃ (EM) ₅		
7125	Au ₂₂ Ag ₃ (PET) ₁₈		
7049	Au ₂₂ Ag ₃ (PET) ₁₇ (EM) ₁		
6973	Au ₂₂ Ag ₃ (PET) ₁₆ (EM) ₂		
6897	Au ₂₂ Ag ₃ (PET) ₁₅ (EM) ₃		
6821	Au ₂₂ Ag ₃ (PET) ₁₄ (EM) ₄		
6754	Au ₂₂ Ag ₃ (PET) ₁₃ (EM) ₅		
7036	$Au_{21}Ag_4(PET)_{18}$		
6960	$Au_{21}Ag_4(PET)_{17}(EM)_1$		
6884	$Au_{21}Ag_4(PET)_{16}(EM)_2$		
6808	Au ₂₁ Ag ₄ (PET) ₁₅ (EM) ₃		
6732	$Au_{21}Ag_4(PET)_{14}(EM)_4$		

Table S1. The m/z values of different products which detected from the spectra of doping parent $Au_{25}(PET)_{18}$ with Ag-SC₂H₅.

Intensity	stage							
nanocluster	1	2	3	4	5	6	7	
Au ₂₅ (PET) ₁₈	7456	50973	10727	2853	210	0	0	
Au ₂₅ (PET) ₁₇ (EM) ₁		1621	3845	1930	265	0	0	
Au ₂₅ (PET) ₁₆ (EM) ₂		0	806	833	244	0	0	
$Au_{24}Ag_1(PET)_{18}$		2929	3981	2968	654	83	0	
Au ₂₄ Ag ₁ (PET) ₁₇ (EM) ₁		278	1958	2614	1085	139		
$Au_{24}Ag_1(PET)_{16}(EM)_2$		319	612	1188	981	1237		
$Au_{24}Ag_1(PET)_{15}(EM)_3$		179	203	415	575	238		
$Au_{24}Ag_1(PET)_{14}(EM)_4$		0	103	151	275	0	0	
$Au_{24}Ag_1(PET)_{13}(EM)_5$		0	0	0	99	0	0	
$Au_{24}Ag_1(PET)_{12}(EM)_6$		0	0	0	0	0	0	
$Au_{23}Ag_2(PET)_{18}$		0	748	1315	1071	210	22	
Au ₂₃ Ag ₂ (PET) ₁₇ (EM) ₁			435	1238	1967	531	68	
$Au_{23}Ag_2(PET)_{16}(EM)_2$				756	1784	647	89	
$Au_{23}Ag_2(PET)_{15}(EM)_3$				305	920	652	0	
$Au_{23}Ag_2(PET)_{14}(EM)_4$				157	410	433	0	
Au ₂₃ Ag ₂ (PET) ₁₃ (EM) ₅				000	127	263	0	
Au ₂₂ Ag ₃ (PET) ₁₈				500	834	524	73	
Au ₂₂ Ag ₃ (PET) ₁₇ (EM) ₁				392	1598	1232	181	
$Au_{22}Ag_3(PET)_{16}(EM)_2$				312	1399	1416	230	
$Au_{22}Ag_3(PET)_{15}(EM)_3$					768	1199	164	
$Au_{22}Ag_3(PET)_{14}(EM)_4$					330	709	69	
$Au_{22}Ag_3(PET)_{13}(EM)_5$					105	320	25	
$Au_{22}Ag_3(PET)_{12}(EM)_6$					32	190	12	
$Au_{21}Ag_4(PET)_{18}$				243	379	539	81	
Au ₂₁ Ag ₄ (PET) ₁₇ (EM) ₁						1038	196	
$Au_{21}Ag_4(PET)_{16}(EM)_2$						1140	219	
$Au_{21}Ag_4(PET)_{15}(EM)_3$						921	158	
$Au_{21}Ag_4(PET)_{14}(EM)_4$						524	0	
Au ₂₁ Ag ₄ (PET) ₁₃ (EM) ₅						161	0	
$Au_{21}Ag_4(PET)_{12}(EM)_6$							0	
Au ₂₀ Ag ₅ (PET) ₁₈							29	
Au ₂₀ Ag ₅ (PET) ₁₇ (EM) ₁							7	

Table S2. The intensity of different products detected from the MALDI-MS spectra of doing the parent $Au_{25}(PET)_{18}$ with Ag-SC₂H₅ in different stages.

m/z (Da)	nanocluster		
7392	Au ₂₅ (PET) ₁₈		
7443	Au ₂₅ (PET) ₁₇ (SPhBr) ₁		
7494	Au ₂₅ (PET) ₁₆ (SPhBr) ₂		
7303	Au ₂₄ Ag ₁ (PET) ₁₈		
7354	Au ₂₄ Ag ₁ (PET) ₁₇ (SPhBr) ₁		
7405	Au ₂₄ Ag ₁ (PET) ₁₆ (SPhBr) ₂		
7456	Au ₂₄ Ag ₁ (PET) ₁₅ (SPhBr) ₃		
7507	Au ₂₄ Ag ₁ (PET) ₁₄ (SPhBr) ₄		
7214	Au ₂₃ Ag ₂ (PET) ₁₈		
7265	Au ₂₃ Ag ₂ (PET) ₁₇ (SPhBr) ₁		
7316	Au ₂₃ Ag ₂ (PET) ₁₆ (SPhBr) ₂		
7367	Au ₂₃ Ag ₂ (PET) ₁₅ (SPhBr) ₃		
7418	Au ₂₃ Ag ₂ (PET) ₁₄ (SPhBr) ₄		
7469	Au ₂₃ Ag ₂ (PET) ₁₃ (SPhBr) ₅		
7125	Au ₂₂ Ag ₃ (PET) ₁₈		
7176	Au ₂₂ Ag ₃ (PET) ₁₇ (SPhBr) ₁		
7227	Au ₂₂ Ag ₃ (PET) ₁₆ (SPhBr) ₂		
7278	Au ₂₂ Ag ₃ (PET) ₁₅ (SPhBr) ₃		
7329	Au ₂₂ Ag ₃ (PET) ₁₄ (SPhBr) ₄		
7380	Au ₂₂ Ag ₃ (PET) ₁₃ (SPhBr) ₅		
7036	$Au_{21}Ag_4(PET)_{18}$		
7087	$Au_{21}Ag_4(PET)_{17}(SPhBr)_1$		
7138	$Au_{21}Ag_4(PET)_{16}(SPhBr)_2$		
7189	$Au_{21}Ag_4(PET)_{15}(SPhBr)_3$		
7240	Au ₂₁ Ag ₄ (PET) ₁₄ (SPhBr) ₄		

Table S3. The m/z values of different products which detected from the spectra of doping parent $Au_{25}(PET)_{18}$ with Ag-SPhBr.

Intensity	stage						
nanocluster	1	2	3	4	5	6	7
Au ₂₅ (PET) ₁₈	2005	3252	2853	9721	4655	2883	2615
Au ₂₅ (PET) ₁₇ (SPhBr) ₁		395	1297	6521	4562	4308	4483
Au ₂₅ (PET) ₁₆ (SPhBr) ₂		53	282	1893	1616	2763	3559
$Au_{24}Ag_1(PET)_{18}$		568	957	5634	3823	4308	6803
Au ₂₄ Ag ₁ (PET) ₁₇ (SPhBr) ₁		168	863	5980	5300	7529	10539
Au ₂₄ Ag ₁ (PET) ₁₆ (SPhBr) ₂			523	3501	3093	6756	11699
Au ₂₄ Ag ₁ (PET) ₁₅ (SPhBr) ₃			233	1187	1251	2763	6587
Au ₂₄ Ag ₁ (PET) ₁₄ (SPhBr) ₄				465	419	957	2379
$Au_{23}Ag_2(PET)_{18}$			85	1187	1251	22883	7511
Au ₂₃ Ag ₂ (PET) ₁₇ (SPhBr) ₁			135	1532	1709	4689	12407
Au ₂₃ Ag ₂ (PET) ₁₆ (SPhBr) ₂				1352	1803	5462	13567
Au ₂₃ Ag ₂ (PET) ₁₅ (SPhBr) ₃				1350	1158	3536	11247
Au ₂₃ Ag ₂ (PET) ₁₄ (SPhBr) ₄						1468	5191
$Au_{22}Ag_3(PET)_{18}$					419	1338	4719
Au ₂₂ Ag ₃ (PET) ₁₇ (SPhBr) ₁					419	1730	5879
Au ₂₂ Ag ₃ (PET) ₁₆ (SPhBr) ₂						1730	6351
Au ₂₂ Ag ₃ (PET) ₁₅ (SPhBr) ₃						1980	6587
Au ₂₂ Ag ₃ (PET) ₁₄ (SPhBr) ₄						1338	4955
$Au_{21}Ag_4(PET)_{18}$							2324
$Au_{21}Ag_4(PET)_{17}(SPhBr)_1$							3452
$Au_{21}Ag_4(PET)_{16}(SPhBr)_2$							4814
$Au_{21}Ag_4(PET)_{15}(SPhBr)_3$							4770
Au ₂₁ Ag ₄ (PET) ₁₄ (SPhBr) ₄							0
Au ₂₁ Ag ₄ (PET) ₁₃ (SPhBr) ₅							0
Au ₂₁ Ag ₄ (PET) ₁₂ (SPhBr) ₆							0

Table S4. The intensity of different products detected from the MALDI-MS spectra of doing the parent $Au_{25}(PET)_{18}$ with Ag-SPhBr in different stages.