Electronic Supplementary Information

Synthesis and Coordination Chemistry of New Asymmetric Donor/Acceptor Pincer Ligands, 2,6-C₆H₄(CH₂P^tBu(R_f))₂ (R_f = CF₃, C₂F₅)

Contribution from The Department of Chemistry at The University of Wyoming Dept. 3838, 1000 E. University Ave., Laramie, WY 82071

Suman Debnath, Gabriel Venegas, Navamoney Arulsamy, and Dean M. Roddick*

Contents:

Selected NMR Spectra, S1 – S10	2-13
Experimental, NMR, and Crystal data for $(^{tBu,Cl}PCPH(BH_3)_2)$	14-16
Catalyst Stability Plots, S12	17

NMR Spectra.

Figure S1a. ¹H (400.13 MHz) NMR spectrum for tBu,TMS PCPH in benzene- d_6 at 25 °C. Solvent impurity at 2.87.

Figure S1b. ³¹P (161.97 MHz) NMR spectrum for tBu,TMS PCPH in benzene- d_6 at 25 °C.

Figure S2a. ¹H (400.13 MHz) NMR spectrum for ${}^{tBu,CF_{2}I}PCPH$ in benzene- d_6 at 25 °C. Unidentified impurities appear at 2.85, 1.0 – 1.4, 0.0 – 0.5 ppm, and residual THF at 3.6 and 1.4.

Figure S2b. ³¹P (161.97 MHz) NMR spectrum for ${}^{tBu,CF_{2}I}PCPH$ in benzene- d_6 at 25 °C.

Figure S2c. ¹⁹F (376.50 MHz) NMR spectrum for ${}^{tBu,CF_2I}PCPH$ in benzene- d_6 at 25 °C, with P-CF₂I expanded region inset.

Figure S3a. ¹H (400.13 MHz) NMR spectrum for tBu,C3F7 PCPH in benzene- d_6 at 25 °C. Residual THF solvent at 3.63 and 1.4 ppm, solvent impurities at 2.8, 0.0 – 0.5 ppm

Figure S3b. ³¹P (161.97 MHz) NMR spectrum for tBu,C3F7 PCPH in benzene- d_6 at 25 °C.

Figure S3c. ¹⁹F (376.50 MHz) NMR spectrum for tBu,C_3F_7 PCPH in benzene- d_6 at 25 °C.

Figure S4a. ¹H (400.13 MHz) NMR spectrum for tBu,Cl PCPH in benzene- d_6 at 25 °C. A solvent impurity overlaps the upfield PCH₂ multiplet.

Figure S4b. ³¹P (161.97 MHz) NMR spectrum for ^{*t*Bu,Cl}PCPH in benzene- d_6 at 25 °C.

Figure S5a. ¹H (400.13 MHz) NMR spectrum for tBu,OPh PCPH in benzene- d_6 at 25 °C. A solvent impurity underlies the 2.65 multiplet, and residual THF appears at 3.6 and 1.4.

Figure S5b. ³¹P (161.97 MHz) NMR spectrum for tBu,OPh PCPH in benzene- d_6 at 25 °C.

Figure S6a. ¹H (400.13 MHz) NMR spectrum for tBu,CF_3 PCPH in benzene- d_6 at 25 °C. A solvent impurity underlies the 2.73 multiplet.

Figure S6b. ³¹P (161.97 MHz) NMR spectrum for tBu,CF_3 PCPH in benzene- d_6 at 25 °C.

Figure S7a. ¹H (400.13 MHz) NMR spectrum for ${}^{tBu,CF_2F_5}PCPH$ in benzene- d_6 at 25 °C.

Figure S7c. ¹⁹F (376.50 MHz) NMR spectrum for ${}^{tBu,CF_2F_5}PCPH$ in benzene- d_6 at 25 °C.

Figure S8a. ¹H (400.13 MHz) NMR spectrum for ($^{tBu,CF_3}PCP$)Ru(cod)(H) (<u>1</u>) in benzene d_6 at 25 °C, with hydride region inset.

Figure S8b. ³¹P (161.97 MHz) NMR spectrum for ($^{tBu,CF_3}PCP$)Ru(cod)(H) (<u>1</u>) in benzene- d_6 at 25 °C.

Figure S8c. ¹⁹F (376.50 MHz) NMR spectrum for (${}^{tBu,CF_3}PCP$)Ru(cod)(H) (<u>1</u>) in benzene- d_6 at 25 °C.

Figure S9a. ¹H (400.13 MHz) NMR spectrum for ($^{tBu,CF_3}PCP$)Ru(nbd)(H) (<u>2</u>) in benzene d_6 at 25 °C.

Figure S9b. ³¹P (161.97 MHz) NMR spectrum for ($^{tBu,CF_3}PCP$)Ru(nbd)(H) (<u>2</u>) in benzene- d_6 at 25 °C.

Figure S9c. ¹⁹F (376.50 MHz) NMR spectrum for ($^{tBu,CF_3}PCP$)Ru(nbd)(H) (<u>2</u>) in benzene- d_6 at 25 °C.

Synthesis of ^{*t*Bu,Cl,(BH₃)}PCPH:

1,3-C₆H₄{CH₂P(^{*t***}Bu,Cl,(BH₃))}₂ (^{***t***Bu,CL,(BH₃)}PCPH). 1.0M BH₃(THF) (6.4 mL, 6.4 mmol)) was added to a solution of ^{***t***Bu,Cl}PCPH (1.08g, 3.1 mmol) in THF (30 mL) and the resulting colorless solution was stirred at ambient temperature for 2 h. Removal of the volatiles under vacuum yielded a white solid (0.73 g, 62%). Crystals suitable for X-ray diffraction were grown from a saturated THF solution (recrystallized yield: 0.28 g, 38%). ¹H NMR (C₆D₆, 400.13 MHz, 25 °C): \delta 7.3 – 6.8 (m, 4H; ArH), 2.99 (m, 2H; C<u>H</u>_aH_bP), 2.81 (m, 2H; CH_a<u>H</u>_bP), 0.97 (d, ³J_{HP} = 13 Hz, 18H; C(CH₃)₃) 0.96 (br. m, 6H; BH₃). ³¹P NMR (C₆D₆, 161.97 MHz, 25 °C): \delta 133.8 (s)**

Figure S10a. ¹H (400.13 MHz) NMR spectrum for ${}^{tBu,Cl}PCPH(BH_3)_2$ in benzene- d_6 at 25 °C. Solvent impurity overlapping 2.81 ppm CH₂P resonance.

Figure S10b. ³¹P (161.97 MHz) NMR spectrum for ^{*t*Bu,Cl}PCPH(BH₃)₂ in benzene-*d*₆ at 25 °C. **X-Ray Data for** ^{*t*Bu,Cl}PCPH(BH₃)₂. X-ray diffraction data were measured at 150 K on a Bruker SMART APEX II CCD area detector system equipped with a graphite monochromator and a Mo K α fine-focus sealed tube operated at 1.5 kW power (50 kV, 30 mA). A colorless rectangular plate of PCPH(PCl(Bu^t)₂)of approximate dimensions 0.46 × 0.44 × 0.18 mm³ was glued to a glass fiber using Paratone N oil. The detector was placed at a distance of 5.13 cm from the crystal during the data collection.

A series of narrow frames of data were collected with a scan width of 0.5° in ω or ϕ and an exposure time of 10 s per frame. The frames were integrated with the Bruker SAINT Software package¹ using a narrow-frame integration algorithm. The integration of the data using a triclinic unit cell yielded a total of 26414 reflections in the θ range of 1.78 to 33.73° of which 8626 were independent with $l \ge 2\sigma(l)$ (R_{int} = 0.0263). The data were corrected for absorption effects by the multi-scan method (SADABS). The structure was solved by the direct methods using the Bruker SHELXTL Software Package.¹ All non-hydrogen atoms were located in successive Fourier maps and refined anisotropically. The asymmetric unit consists of a well ordered PCPH(PCl(Bu^t)₂) molecule. All non-hydrogen atoms were located in successive Fourier maps and refined anisotropically. The H atoms of the centrZl phenylene ring and the two methylene groups were also located in the Fourier maps and refined isotropically. The rest of the H atoms were placed in calculated positions and refined by a riding model with fixed thermal parameters. A view of the PCPH(PCl(Bu^t)₂) molecule is shown in Figure S11. The final refinement parameters are $R_1 = 0.0639$ and $wR_2 = 0.1734$ for data with $F > 4\sigma(F)$ giving the data to parameter ratio of 30.7. The refinement data for all data are $R_1 = 0.0814$ and $wR_2 = 0.1886$.

Acknowledgment. Financial support by the NSF (CHE 0619920) for the purchase of the Bruker Apex II Diffractometer is gratefully acknowledged.

References

APEX2 Software Suite V. 2.2, Bruker AXS Inc.: Madison, WI, 2008.

Figure S11. Molecular plot of $meso-^{tBu,Cl}PCPH(BH_3)_2$ showing 50% probability thermal ellipsoids and the labeling scheme for unique atoms. Crystal data has been deposited with the CCDC, # 1853106

Figure S12. Comparative catalyst activity plot for ($^{tBu,CF3}PCP$)Ru(nbd)H under 590 Torr of N₂ (**■**), under vacuum (**●**), and with 100 equiv of added H₂O (**♦**) in 1:1 cyclooctane/*tert*-butylethylene at 200 °C (0.033 mol % catalyst loading).