Supporting Information

High cycling stable supercapacitor through electrochemical deposition of metal-organic frameworks/polypyrrole positive

electrode

Yaozhi Liu, Na Xu, Weichao Chen, Xinlong Wang*, Chunyi Sun, Zhongmin Su*

National & Local United Engineering Laboratory for Power Battery, Northeast Normal University, Changchun, Jilin, 130024, P. R. China.

Fig. S1. SEM images of (a) the CC/ZIF-67 and (b) CC/ZIF-67/PPy electrode.

Fig. S2 (a) Colour of carbon cloth (CC), CC/ZIF-67 and CC/ZIF-67/PPy. (b) Chronopotentiometric curves during pyrrole polymerization.

Fig. S3. XRD patterns of (a) the simulated ZIF-67, as-synthesized ZIF-67, CC/ZIF-67 and (b) CC and CC/PPy

Fig. S4. FTIR spectrum of the CC, CC/PPy and CC/ZIF-67/PPy electrode.

Fig. S5 (a) CV curves at 100 mV s⁻¹ of CC/ZIF-67/PPy, CC/ZIF-67 and CC/PPy. (b) GCD curves at 20 mA cm⁻² of CC/ZIF-67/PPy, CC/ZIF-67 and CC/PPy.

Fig. S6. CV curves of (a) ZIF/PPy/20 (c) ZIF/PPy/30 (e) ZIF/PPy/40 at different scan rate. GCD curves of (b) ZIF/PPy/20 (d) ZIF/PPy/30 (f) ZIF/PPy/40 at different current density.

Fig. S7. Capacitance retention of (a) ZIF/PPy/10 (b) ZIF/PPy/20 (c) ZIF/PPy/30 (d) ZIF/PPy/40 with different current density from 1 to 20 mA cm⁻²

Table S1. The mass loading of ZiF/PPy/10, ZiF/PPy/20, ZiF/PPy/30 and ZiF/PPy/40.				
Туре	ZIF/PPy/10	ZIF/PPy/20	ZIF/PPy/30	ZIF/PPy/40
Mass loading (mg)	0.45	0.55	0.63	0.70

Туре	Specific	Electrolyte	Scan rate	Specific	
	surface area		(current	capacitance (F	Ref.
	(m² g-1)		density)	g-1)	
Ni-DMOF-	783	2M KOH	1 A g ⁻¹	552	1
ADC					
Co-MOF	-	1M LiOH	0.6 A g ⁻¹	207	2
Co8-MOF-5	2900	0.1M TBATF6	10 mA g ⁻¹	0.3	3
Co-BPDC	138	0.5M LiOH	10 mV s ⁻¹	179	4
Ni ₃ (HITP) ₂	630	TEABF ₄	50 mV s ⁻¹	111	5

PANI-	73	3M KCl	10 mV s ⁻¹	371 (35 mF	6
ZIF67-CC			cm-2)		
PANI-					
CNT@ZIF-	1194	3M KCl	10 mV s ⁻¹	0.58	7
67-CC					
ZIF-PPy-2	1168	1M Na ₂ SO ₄	0.5 A g ⁻¹	554	8
ZIF/PPy/10	-	6M KOH	1 mA cm ⁻²	284.9 (180.7	This work
				mF cm⁻²)	

Table S3. Comparison of cycling stability between ZIF/PPy/10 and other supercapacitor electrodes.

	Туре	Electrolyte	Capacitance	cycles	Ref	
		retention				
	Ni-DMOF-	2M KOH	98%	16000	1	
	ADC					
MOFs-based	Co-MOF	1M LiOH	98.5%	1000	2	
supercapacitor	Ni ₃ (HITP) ₂	TEABF ₄	90%	10000	5	
electrode	PANI-	3M KCl	80%	2000	7	
material	CNT@ZIF-					
	67-CC					
	ZIF-PPy-2	$1M Na_2SO_4$	90.7%	10000	8	
	Zn/Ni-MOF@PPy	ЗМ КОН	78.8%	5000	9	
Carbon-based	F-GRF	6М КОН	109%	40000	10	
supercapacitor	PTAC-6	6М КОН	100%	10000	11	
electrode	Mo-S2-rGo@PPyNTs	3M KCl	72%	10000	12	
material	a-SA/BC-700	6М КОН	93.8%	10000	13	
Metal-based	NiO/C&S	ЗМ КОН	115.9%	5000	14	
supercapacitor	Co foam@CPNA	2M KOH	77.5%	20000	15	
electrode	Au-PEDOT H3PO4/PVA PEDOT-Au	1 M H ₃ PO ₄	91.8%	20000	16	
material						
	ZIF/PPy/10	6M KOH	100.7%	40000	This work	

 C. Qu, Y. Jiao, B. Zhao, D. Chen, R. Zou, K. S.Walton and M. Liu, Nickel-Based Pillared MOFs for High-Performance Supercapacitors: Design, Synthesis and Stability Study. *Nano Energy*, 2016, 26, 66-73.

- 2. D. Y. Lee, S. J. Yoon, N. K. Shrestha, S.-H. Lee, H. Ahn and S.-H. Han, Unusual Energy Storage and Charge Retention in Co-Based Metal–Organic Frameworks. *Micropor. Mesopor. Mater.*, 2012, **153**, 163-165.
- 3. R. Díaz, M. G. Orcajo, J. A. Botas, G. Calleja and J. Palma, Co8-MOF-5 as Electrode for Supercapacitors. *Mater. Lett.*, 2012, 68, 126-128.

 D. Y. Lee, D. V. Shinde, E.-K. Kim, W. Lee, I.-W. Oh, N. K. Shrestha, J. K. Lee and S.-H. Han, Supercapacitive Property of Metal–Organic Frameworks with Different Pore Dimensions and Morphology. *Micropor. Mesopor. Mater.* 2013, **171**, 53-57.

 D. Sheberla, J. C. Bachman, J. S. Elias, C.-J. Sun, Y. Shao-Horn and M. Dincă, Conductive MOF Electrodes for Stable Supercapacitors with High Areal Capacitance. *Nature Mater.* 2017, *16*, 220-224.

 L. Wang, X. Feng, L. Ren, Q. Piao, J. Zhong, Y. Wang, H. Li, Y. Chen, B. Wang, Flexible Solid-State Supercapacitor Based on a Metal–Organic Framework Interwoven by Electrochemically-Deposited PANI. J. Am. Chem. Soc., 2015, 137, 4920-4923.

 L. Wang, H. Yang, G. Pan, L. Miao, S. Chen and Y. Song, Polyaniline-Carbon Nanotubes@Zeolite–Imidazolate Framework 67-Carbon Cloth Hierarchical Nanostructures for Supercapacitor Electrode. *Electrochim. Acta*, 2017, 240, 16-23.

 X. T. Xu, J. Tang, H. Y. Qian, S. J. Qian, S. J. Hou, Y. S. Bando, M. S. A. Hossain, L. K. Pan and Y. Yamauchi, Three-Dimensional Networked Metal–Organic Frameworks with Conductive Polypyrrole Tubes for Flexible Supercapacitors, Acs Appl. Mater. Interfaces, 2017, 9, 38737-38744.

- 9. Y. Jiao, G. Chen, D. Chen, J. Pei and Y. Y. Hu, Bimetal–organic framework assisted polymerization of pyrrole involving air oxidant to prepare composite electrodes for portable energy storage, *J. Mater. Chem. A*, 2017, **5**, 23744-23752.
- L. Sheng, J. Chang, L. Jiang, Z. Jiang, Z. Liu, T. Wei and Z. Fan, Multilayer-Folded Graphene Ribbon Film with Ultrahigh Areal Capacitance and High Rate Performance for Compressible Supercapacitors, Adv. Funct. Mater., 2018, 28, 1800597.
- X. Su, S. Li, S. Jiang, Z. Peng, X. Guan and X. Zheng, Superior capacitive behavior of porous activated carbon tubes derived from biomass waste-cotonier strobili fibers, Advanced Powder Technology, 2018, 29, 2097-2107.
- 12. D. Sarmah and A. Kumar, Layer-by-layer self-assembly of ternary MoS2-rGO@PPyNTs nanocomposites for high performance supercapacitor electrode, Synthetic Metals, 2018, 243, 75-89.
- 13. Q. Bai, Q. Xiong, C. Li, Y. Shen and H. Uyama, Hierarchical porous carbons from a sodium alginate/bacterial cellulose composite for high-performance supercapacitor electrodes, Applied Surface Science, 2018, 455, 795-807.
- 14. F. Shi, J. Jiang, H. Xiao and X. Li, An extra-long-life supercapacitor based on NiO/C&S composite by decomposition of Ni-based coordination complex, Materials and Design, 2018, 153, 203-210.
- 15. Y. Dai, S. Zhu, C. Wang, Y. Cong, Y. Zeng, T. Jiang, H. Huang and X. Meng, In-situ fabrication of Co foam@Co3O4 porous nanosheet arrays for high performance supercapacitors, Journal of Alloys and Compounds, 2018, 748, 291-297.
- N. Wang, G. Han, H. Song, Y. Xiao, Y. Li, Y. Zhang and H. Wang, Integrated flexible supercapacitor based on poly (3, 4-ethylene dioxythiophene) deposited on Au/porous polypropylene film/Au, Journal of Power Sources, 2018, 395, 228-236.