Dual response fluorescent sensor for HNO and S²⁻ ions using Cu(II) complex based probe assistant with detailed DFT studies.

Ananya Dutta^a, Rabiul Alam^a, Abu Saleh Musha Islam^a, Arpan Dutta^a and Mahammad Ali^{a,b*}

^aDepartment of Chemistry Jadavpur University, Kolkata 700 032, India; Fax: 91-33-2414-6223, E-mail: m_ali2062@yahoo.com, mali@chemistry.jdvu.ac.in

^bVice-Chancellor, Aliah University, II-A/27, Action Area II, Newtown, Action Area II, Kolkata, West Bengal 700160,

Supporting Information for Publication

No.	Content.	Figure.No.
1.	¹ H NMR spectrum of spectrum of (L^1) in DMSO- d_{6}	Fig.S1
2.	¹ H NMR spectrum of spectrum of (L ²) in DMSO-d _{6.}	Fig. S1a
3.	¹³ CNMR spectrum of (L ²) in DMSO-d ₆	Fig.S2
4.	Mass spectrum of L ² in MeCN.	Fig. S3
5.	Mass spectrum of Cu-L ² in MeCN	Fig. S3a
6.	Mass spectrum of Cu-L ² in MeCN and water mixture after purging HNO in Cu-L ²	Fig. S3b
7.	Mass spectrum of $Cu-L^2$ in MeCN and water mixture after purging Na ₂ S in $Cu-L^2$	Fig. S3c
8.	IR spectrum of for L ² and Cu-L ² in solid state	Fig. S4
9.	Bar chart illustrating fluorescence responses of [Cu^{II}-L²] ⁺ complex towards different biological anions	Fig.S5
10	Fluorescence emission changes of $[Cu^{II}-L^2]^+$ (20 μ M) in MeCN solutions upon addition of S ²⁻ .	Fig.S6
11	pH dependence of fluorescence responses of [Cu^{II}-L²] ⁺ complex.	Fig. S7
12	Changes in UV-vis absorption spectra of $[Cu^{II}-L^2]^+$ (20 μ M) in MeCN solutions with various amounts of HNO (0-2.5 equivalent).	Fig. S8
13.	Selective bond distance and bond angles of L ²	Table S1
14.	Selective bond distance and bond angles of [Cu ^{II} (L ²)Cl].	Table S1a
15.	Selective bond distance and bond angles of [Cul(L2)].	Table S1b
16.	Selected parameters for the vertical excitation (UV-VIS absorptions) of L ²	Table S2

17.	Selected parameters for the vertical excitation (UV-VIS absorptions) of [Cu ^{II} (L ²)Cl].	Table S3
18.	Selected parameters for the vertical excitation (UV-VIS absorptions) of [Cu ^I (L ²)].	Table S4

Fig.S1.¹H NMR spectrum of spectrum of (L¹) in DMSO-d₆.

Fig. S1a.¹H NMR spectrum of spectrum of (L^2) in DMSO- $d_{6.}$

Fig.S2.¹³C NMR spectrum of L^2 in DMSO- d_6 (300Mz).

Fig. S3. Mass spectrum of L² in MeCN.

Fig. S3a. Mass spectrum of [Cu(L²)Cl] in MeOH.

Fig. S3b. Mass spectrum of [Cu(L²)Cl]+ Na₂N₂O₃ in MeCN and H₂O.

Fig. S3c. Mass spectrum of $\mbox{Cu-L}^2\mbox{+}$ Na2S in MeCN and H2O

Fig. S4. IR spectrum of for L² and [Cu(L²)Cl] in solid state.

Fig.S5. Bar chart illustrating fluorescence responses of $[Cu^{II}-L^2]^+$ complexat 469 nm (λ_{ex} = 380 nm) towards different biological anions inCH₃CN. Xⁿ⁻ = NO , KO₂, H₂O₂ , TEMPO radical, OH⁻ , NO₂⁻, cysteine, glutathione, sodium ascorbate and HNO.

Fig.S6.(a) Fluorescence emission changes of $[Cu^{II}-L^2]^+$ (20 μ M) in MeCN solutions upon addition of S²⁻(50 μ M), λ_{ex} = 380nm, λ_{em} =478 nm);(b) Linear fitting plot.

Fig. S7. pH dependence of fluorescence responses of [**Cu**^{II}-**L**²]⁺ complex.

Fig. S8. Changes in UV-vis absorption spectra of $[Cu^{II}-L^2]^+$ (20 μ M) in MeCN solutions with various amounts of HNO (0-2.5 equivalent).

Quantum Yield Determination:

Fluorescence quantum yields (Φ) were estimated by integrating the area under the fluorescence

curves with the equation: $\mathbf{\Phi}_{sample} = \frac{OD_{std}}{OD_{sample}} \times \frac{A_{sample}}{A_{std}} \times \mathbf{\Phi}_{std}$

where, A was the area under the fluorescence spectral curve, OD was optical density of the compound at the excitation wavelength and η was the refractive indices of the solvent. Quantum yields of L² and [Cu-L²+ S²⁻] and [Cu-L²+ HNO] complexes in acetonitrile (CH₃CN) are found to be 0.107, 0.09, 0.07 respectively using Quinine Sulphate as standard.

Table S1: Selective bond distance and bond angles of L^2

Bond distance(Å)		Bond-angles(°)	
N24-N26	1.39	C7 N17 C19	129.776
C22-O23	1.25	C19 C22 O23	122.608
C7-N17	1.37	C19 C22 N24	117.167
N17-C19	1.45	C22 N24 N26	122.772
C19-C22	1.52		
C22-N24	1.37		

Table S1a: Selective bond distance and bond angles of [Cu^{II}(L²)Cl].

Bond distance(Å)		Bond-angles(°)	
Cu27-Cl29	2.16	N17Cu27O28	84.356
O28-Cu27	1.90	N17Cu27N16	79.411
N16-Cu27	2.06	O28Cu27Cl29	101.149
N17-Cu27	2.24	N16Cu27Cl29	102.904

Table S1b: Selective bond distance and bond angles of [Cu^I(L²)].

Bond distance(Å)		Bond-angles(°)	
N17-Cu27	2.42	N17Cu27O28	85.02
N16-Cu27	1.91	N17 Cu27 N16	81.35
O28-Cu27	1.87	N28C22N23	125.17
N23-N24	1.40		

Table S2: Selected parameters for the vertical excitation (UV-Vis absorptions) of L^2 ; electronic excitation energies (eV) and oscillator strength (f), configurations of the low-lying excited states of L^2 ; calculation of the $S_0 \rightarrow S_n$ energy gaps on optimized ground- state geometries (UV-vis absorption).

Electronic	Composition	Excitation	Oscillator	CI	Assignment	λ_{exp} (nm)
transition		energy	Strength(f)			
$S_0 \rightarrow S_6$	HOMO→LUMO+1	3.7365 eV	0.2682	0.25046	ILCT	350
$S_0 \rightarrow S_{14}$	HOMO-1	4.8318 eV	0.2029	0.37123	ILCT	256
	→LUMO+3					
$S_0 \rightarrow S_{31}$	HOMO-6	6.0349 eV	0.1193	0.35030	ILCT	200
	→LUMO+4					

Table S3 : Selected parameters for the vertical excitation (UV-Vis absorptions) of [Cu^{II}(L²)Cl]; electronic excitation energies (eV) and oscillator strength (f), configurations of the low-lying excited states of [Cu^{II}(L²)Cl]; calculation of the $S_0 \rightarrow S_n$ energy gaps on optimized ground- state geometries (UV-Vis absorption).

Electronic transiti on	Composition	Excitation energy	Oscillator Strength(f)	CI	Assignment	λ _{exp} (nm)
S ₀ →S ₁₅	HOMO- 1→LUMO	3.7383 eV	0.110	0.74643	ILCT/MLCT	352
S ₀ →S ₁₇	HOMO- 1→LUMO+ 1	3.8042 eV	0.0222	0.26103	ILCT/MLCT	315
$S_0 \rightarrow S_{38}$	HOMO- 2-→LUMO+ 1	4.9618 eV	0.0104	0.16877	ILCT/MLCT	256

Table S4 : Selected parameters for the vertical excitation (UV-VIS absorptions) of $[Cu^{l}(L^{2})]$; electronic excitation energies (eV) and oscillator strength (f), configurations of the low-lying excited states of $[Cu^{l}(L^{2})]$; calculation of the $S_{0} \rightarrow S_{n}$ energy gaps on optimized ground- state geometries (UV-Vis absorption).

Electronic transiti on	Composition	Excitation energy	Oscillator Strength(f)	CI	Assignment	λ _{exp} (nm)
$S_0 \rightarrow S_4$	HOMO- 2→LUMO	3.5366eV	0.0304	0.28325	ILCT/MLCT	350
$S_0 \rightarrow S_{12}$	HOMO- 1→LUMO+ 2	4.2501eV	0.0183	0.56234	ILCT/MLCT	287