Electronic Supplementary Information

Smoothing the single-crystal to single-crystal conversions of a twodimensional metal-organic framework via the hetero-metal doping of

the linear trimetallic secondary building unit

Meng-Yao Chao,^a Jing Chen,^a David J. Young,^b Wen-Hua Zhang*^a and Jian-Ping Lang*^a

^aCollege of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China. E-mail: whzhang@suda.edu.cn; jplang@suda.edu.cn ^bFaculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore, Queensland 4558, Australia

Contents

Fig.	S1	PXRD	patterns	of	[Cd _{2.25} Co _{0.75} (BTB) ₂ (DPDS) ₂]·xSol	(3,	a)	and			
[Cd _{2.25} Co _{0.75} (BTB) ₂ (BIPY)(H ₂ O) ₂]·xSol (4 , b)											
Fig.	S2	TGA	curves	of	[Cd _{2.25} Co _{0.75} (BTB) ₂ (DPDS) ₂]·xSol	(3,	a)	and			
[Cd _{2.25}	Co _{0.75} (B [·]	TB) ₂ (BIPY)	(H₂O)₂]∙xSo	l (4 , b).				3			
Fig. S3	The PX	RD patter	ns for samp	les by l	heating 1a , 2–4 at 380 °C under N ₂	for 30 ı	min, sho	wing			
the re	ention	of some cr	rystallinity.					4			
Fig. S4	The FT-	IR spectra	of the sam	ples by	heating 1a , 2 – 4 at 380 °C under N ₂	for 30 i	min, sho	owing			
the ge	neratio	n of the sa	ame produc	ct (likel	y [Cd _{2.25} Co _{0.75} (BTB) ₂]·xH ₂ O). Peaks a	at wave	e numbe	ers of			
1607 c	m ^{−1} and	1386 cm⁻	¹ are charad	cteristic	asymmetric and symmetric stretch	ing vibı	rations o	of the			
carbox	ylate							4			
Fig. S5	The str	ucture of 2	La showing	the dou	uble-layered structure with honeyco	omb-sh	aped ca	vities			
as supported by Cd _{2.25} Co _{0.75} -BTB associations5											
Fig. S	6 The	Cd₃ coor	dination e	nvironi	ments of [Cd _{2.25} Co _{0.75} (BTB) ₂ (DEF) ₄]·2(DEF	⁼) _{0.5} (1a	n, a),			
[Cd _{2.25}	Co _{0.75} (B [·]	TB) ₂ (DPS) ₂]· <i>x</i> Sol (2	., b),	, [Cd _{2.25} Co _{0.75} (BTB) ₂ (DPDS) ₂]·xSol	(3 ,	c)	and			
[Cd _{2.25}	Co _{0.75} (B [·]	TB) ₂ (BIPY)	(H₂O)₂]∙ <i>x</i> So	l (4 , d).	Color legend: Cd (dark magenta),	C (blac	k) <i>,</i> O (re	ed), N			
(blue),	S (yello	w)						6			
Fig. S7	′ N ₂ (77	′K) and C	СО ₂ (195 К)	sorptio	on isotherms of [Cd _{2.25} Co _{0.75} (BTB) ₂ ((DPDS)	₂]∙xSol (3 , a),			
[Cd _{2.25}	Co _{0.75} (B [·]	TB) ₂ (BIPY)	(H₂O)₂]∙xSo	l (4 , b),	with pressures of up to 1 bar. The b	olack sq	uare an	d red			
circle	epreser	nt N ₂ abso	rption and o	desorpt	tion at 77 K, while the blue and pink	triang	les repro	esent			
CO_2 absorption and desorption at 195 K. P_0 is the saturated vapor pressure of the adsorbates at											
the m	easurem	ient temp	eratures					6			
Table	51 The I	CP analysi	s showing t	he diffe	erent metal distribution in the prod	ucts		7			

 Fig.
 S1
 PXRD
 patterns
 of
 [Cd_{2.25}Co_{0.75}(BTB)₂(DPDS)₂]·xSol
 (3, a)
 and

 [Cd_{2.25}Co_{0.75}(BTB)₂(BIPY)(H₂O)₂]·xSol
 (4, b).

 Fig.
 S2
 TGA
 curves
 of
 $[Cd_{2.25}Co_{0.75}(BTB)_2(DPDS)_2] \cdot xSol$ (3, a)
 and

 $[Cd_{2.25}Co_{0.75}(BTB)_2(BIPY)(H_2O)_2] \cdot xSol$ (4, b).
 $[Cd_{2.25}Co_{0.75}(BTB)_2(BIPY)(H_2O)_2] \cdot xSol$ $[Cd_{2.25}Co_{0.75}(BTB)_2(BIPY)(H_2O)_2] \cdot xSol$

Fig. S3 The PXRD patterns for samples by heating 1a, 2–4 at 380 °C under N_2 for 30 min, showing the retention of some crystallinity.

Fig. S4 The FT-IR spectra of the samples by heating **1a**, **2**–**4** at 380 °C under N₂ for 30 min, showing the generation of the same product (likely $[Cd_{2.25}Co_{0.75}(BTB)_2]\cdot xH_2O$). Peaks at wave numbers of 1607 cm⁻¹ and 1386 cm⁻¹ are characteristic asymmetric and symmetric stretching vibrations of the carboxylate.

Fig. S5 The structure of 1a showing the double-layered structure with honeycomb-shaped cavities as supported by $Cd_{2.25}Co_{0.75}$ -BTB associations.

Fig. S6 The Cd₃ coordination environments of $[Cd_{2.25}Co_{0.75}(BTB)_2(DEF)_4]\cdot 2(DEF)_{0.5}$ (**1a**, a), $[Cd_{2.25}Co_{0.75}(BTB)_2(DPS)_2]\cdot xSol$ (**2**, b), $[Cd_{2.25}Co_{0.75}(BTB)_2(DPDS)_2]\cdot xSol$ (**3**, c) and $[Cd_{2.25}Co_{0.75}(BTB)_2(BIPY)(H_2O)_2]\cdot xSol$ (**4**, d). Color legend: Cd (dark magenta), C (black), O (red), N (blue), S (yellow).

Fig. S7 N₂ (77 K) and CO₂ (195 K) sorption isotherms of $[Cd_{2.25}Co_{0.75}(BTB)_2(DPDS)_2] \cdot xSol ($ **3**, a), $<math>[Cd_{2.25}Co_{0.75}(BTB)_2(BIPY)(H_2O)_2] \cdot xSol ($ **4**, b), with pressures of up to 1 bar. The black square and redcircle represent N₂ absorption and desorption at 77 K, while the blue and pink triangles representCO₂ absorption and desorption at 195 K. P₀ is the saturated vapor pressure of the adsorbates atthe measurement temperatures.

Starting ratio	m	Cd		Со		Product ratio
(Cd:Co)	(mg)	с	w%	с	w%	(Cd:Co ₎
		(ppm)		(ppm)		
1:1	7.21	16.58	11.50	6.83	4.74	5:4
2:1	7.24	21.42	14.79	3.79	2.62	3:1
3:1	7.08	20.89	14.76	3.83	2.71	3:1
3:2	7.16	19.37	13.53	5.18	3.62	2:1
4:1	7.05	23.58	16.72	2.55	1.81	5:1
4:3	7.14	17.46	12.23	5.24	3.67	5:3
5:1	7.20	24.21	16.81	2.38	1.65	5:1
5:2	7.25	21.14	14.58	3.38	2.33	3:1
5:3	7.13	20.40	14.31	4.27	2.99	5:2
5:4	7.29	17.93	12.30	6.26	4.30	3:2

Table S1 The ICP analysis showing the different metal distribution in the products.