Electronic Supporting Information (ESI) for:

Synthesis, characterization, and catalytic evaluation of ruthenium–diphosphine complexes bearing xanthate ligands

Mohammed Zain Aldin,^a Anthony Maho,^b Guillermo Zaragoza,^c Albert Demonceau,^a and Lionel Delaude^{*a}

^aLaboratory of Organometallic Chemistry and Homogeneous Catalysis, Institut de chimie (B6a), Allée du six Août 13, Quartier Agora, Université de Liège, 4000 Liège, Belgium

^bGreenMAT, Institut de Chimie (B6a), Allée du six Août 13, Quartier Agora, Université de Liège, 4000 Liège, Belgium

^cUnidade de Difracción de Raios X, Edificio CACTUS, Universidade de Santiago de Compostela, Campus Vida, 15782 Santiago de Compostela, Spain

Table of content

Part 1 – NMR spectra	6
Fig. S1. ¹ H NMR spectrum of [Ru(S ₂ COEt) ₂ (dppm)] (1)	6
Fig. S2. ${}^{1}H{}^{31}P{}$ NMR spectrum of [Ru(S ₂ COEt) ₂ (dppm)] (1)	6
Fig. S3. ¹³ C{ ¹ H} NMR spectrum of $[Ru(S_2COEt)_2(dppm)]$ (1)	7
Fig. S4. ¹³ C{ ¹ H} APT NMR spectrum of $[Ru(S_2COEt)_2(dppm)]$ (1)	7
Fig. S5. ¹³ C CPD and APT NMR spectra of [Ru(S ₂ COEt) ₂ (dppm)] (1)	8
Fig. S6. ³¹ P NMR spectrum of [Ru(S ₂ COEt) ₂ (dppm)] (1)	9
Fig. S7. ¹ H NMR spectrum of [Ru(S ₂ COEt) ₂ (dppe)] (2)	9
Fig. S8. ${}^{1}H{}^{31}P{}$ NMR spectrum of [Ru(S ₂ COEt) ₂ (dppe)] (2)	10
Fig. S9. ¹³ C{ ¹ H} NMR spectrum of [Ru(S ₂ COEt) ₂ (dppe)] (2)	10
Fig. S10. ¹³ C{ ¹ H} APT NMR spectrum of $[Ru(S_2COEt)_2(dppe)]$ (2)	11
Fig. S11. ¹³ C CPD and APT NMR spectra of [Ru(S ₂ COEt) ₂ (dppe)] (2)	11
Fig. S12. ³¹ P NMR spectrum of [Ru(S ₂ COEt) ₂ (dppe)] (2)	12
Fig. S13. ¹ H NMR spectrum of [Ru(S ₂ COEt) ₂ (dppp)] (3)	12
Fig. S14. ¹³ C{ ¹ H} NMR spectrum of [Ru(S ₂ COEt) ₂ (dppp)] (3)	13
Fig. S15. ³¹ P NMR spectrum of [Ru(S ₂ COEt) ₂ (dppp)] (3)	13
Fig. S16. ¹ H NMR spectrum of [Ru(S ₂ COEt) ₂ (dppb)] (4)	14
Fig. S17. ${}^{1}H{}^{31}P{}$ NMR spectrum of [Ru(S ₂ COEt) ₂ (dppb)] (4)	14
Fig. S18. ¹³ C{ ¹ H} NMR spectrum of [Ru(S ₂ COEt) ₂ (dppb)] (4)	15
Fig. S19. ¹³ C{ ¹ H} APT NMR spectrum of $[Ru(S_2COEt)_2(dppb)]$ (4)	15
Fig. S20. ¹³ C CPD and APT NMR spectra of [Ru(S ₂ COEt) ₂ (dppb)] (4)	16
Fig. S21. COSY NMR spectrum of [Ru(S ₂ COEt) ₂ (dppb)] (4)	17
Fig. S22. ³¹ P NMR spectrum of [Ru(S ₂ COEt) ₂ (dppb)] (4)	17
Fig. S23. ¹ H NMR spectrum of [Ru(S ₂ COEt) ₂ (dpppe)] (5)	
Fig. S24. ${}^{1}H{}^{31}P{}$ NMR spectrum of [Ru(S ₂ COEt) ₂ (dpppe)] (5)	
Fig. S25. ¹³ C{ ¹ H} NMR spectrum of [Ru(S ₂ COEt) ₂ (dpppe)] (5)	19
Fig. S26. ¹³ C{ ¹ H} APT NMR spectrum of $[Ru(S_2COEt)_2(dpppe)]$ (5)	19
Fig. S27. ¹³ C CPD and APT NMR spectra of [Ru(S ₂ COEt) ₂ (dpppe)] (5)	20

Fig. S28. ³¹ P NMR spectrum of [Ru(S ₂ COEt) ₂ (dpppe)] (5)	21
Fig. S29. ¹ H NMR spectrum of [Ru(S ₂ COEt) ₂ (dppen)] (6)	21
Fig. S30. ${}^{1}H{}^{31}P{}$ NMR spectrum of [Ru(S ₂ COEt) ₂ (dppen)] (6)	22
Fig. S31. ¹³ C{ ¹ H} NMR spectrum of [Ru(S ₂ COEt) ₂ (dppen)] (6)	22
Fig. S32. ¹³ C{ ¹ H} APT NMR spectrum of [Ru(S ₂ COEt) ₂ (dppen)] (6)	23
Fig. S33. ¹³ C CPD and APT NMR spectra of [Ru(S ₂ COEt) ₂ (dppen)] (6)	23
Fig. S34. ³¹ P NMR spectrum of [Ru(S ₂ COEt) ₂ (dppen)] (6)	24
Fig. S35. ¹ H NMR spectrum of [Ru(S ₂ COEt) ₂ (dppbz)] (7)	
Fig. S36. ${}^{1}H{}^{31}P{}$ NMR spectrum of [Ru(S ₂ COEt) ₂ (dppbz)] (7)	
Fig. S37. ¹³ C{ ¹ H} NMR spectrum of [Ru(S ₂ COEt) ₂ (dppbz)] (7)	25
Fig. S38. ¹³ C{ ¹ H} APT NMR spectrum of [Ru(S ₂ COEt) ₂ (dppbz)] (7)	26
Fig. S39. ¹³ C CPD and APT NMR spectra of [Ru(S ₂ COEt) ₂ (dppbz)] (7)	26
Fig. S40. ³¹ P NMR spectrum of [Ru(S ₂ COEt) ₂ (dppbz)] (7)	27
Fig. S41. ¹ H NMR spectrum of [Ru(S ₂ COEt) ₂ (dppf)] (8)	27
Fig. S42. ${}^{1}H{}^{31}P{}$ NMR spectrum of [Ru(S ₂ COEt) ₂ (dppf)] (8)	
Fig. S43. ¹³ C{ ¹ H} NMR spectrum of [Ru(S ₂ COEt) ₂ (dppf)] (8)	
Fig. S44. ¹³ C{ ¹ H} APT NMR spectrum of [Ru(S ₂ COEt) ₂ (dppf)] (8)	
Fig. S45. ¹³ C CPD and APT NMR spectra of [Ru(S ₂ COEt) ₂ (dppf)] (8)	
Fig. S46. ³¹ P NMR spectrum of [Ru(S ₂ COEt) ₂ (dppf)] (8)	
Fig. S47. ¹ H NMR spectrum of [Ru(S ₂ COEt) ₂ (DPEphos)] (9)	31
Fig. S48. ¹³ C{ ¹ H} NMR spectrum of [Ru(S ₂ COEt) ₂ (DPEphos)] (9)	31
Fig. S49. ¹³ C{ ¹ H} APT NMR spectrum of [Ru(S ₂ COEt) ₂ (DPEphos)] (9)	32
Fig. S50. ¹³ C CPD and APT NMR spectra of [Ru(S ₂ COEt) ₂ (DPEphos)] (9)	32
Fig. S51. ³¹ P NMR spectrum of [Ru(S ₂ COEt) ₂ (DPEphos)] (9)	
Part 2 – IR spectra	
Fig. S52. FT-IR spectrum (KBr) of [Ru(S ₂ COEt) ₂ (dppm)] (1)	
Fig. S53. FT-IR spectrum (KBr) of [Ru(S ₂ COEt) ₂ (dppe)] (2)	34
Fig. S54. FT-IR spectrum (KBr) of [Ru(S ₂ COEt) ₂ (dppp)] (3)	35
Fig. S55. FT-IR spectrum (KBr) of [Ru(S ₂ COEt) ₂ (dppb)] (4)	35
Fig. S56. FT-IR spectrum (KBr) of [Ru(S ₂ COEt) ₂ (dpppe)] (5)	

Fig. S57. FT-IR spectrum (KBr) of [Ru(S ₂ COEt) ₂ (dppen)] (6)	36
Fig. S58. FT-IR spectrum (KBr) of [Ru(S ₂ COEt) ₂ (dppbz)] (7)	37
Fig. S59. FT-IR spectrum (KBr) of [Ru(S ₂ COEt) ₂ (dppf)] (8)	37
Fig. S60. FT-IR spectrum (KBr) of [Ru(S ₂ COEt) ₂ (DPEphos)] (9)	38
Part 3 – Mass spectra	39
Fig. S61. Isotope profiles of [Ru(S ₂ COEt) ₂ (dppm)] (1) obtained by ESI-MS and simulated isotope patterns of the corresponding ion	39
Fig. S62. Isotope profiles of [Ru(S ₂ COEt) ₂ (dppe)] (2) obtained by ESI-MS and simulated isotope patterns of the corresponding ion	40
Fig. S63. Isotope profiles of [Ru(S ₂ COEt) ₂ (dppp)] (3) obtained by ESI-MS and simulated isotope patterns of the corresponding ion	40
Fig. S64. Isotope profiles of [Ru(S ₂ COEt) ₂ (dppb)] (4) obtained by ESI-MS and simulated isotope patterns of the corresponding ion	41
Fig. S65. Isotope profiles of [Ru(S ₂ COEt) ₂ (dpppe)] (5) obtained by ESI-MS and simulated isotope patterns of the corresponding ion	41
Fig. S66. Isotope profiles of [Ru(S ₂ COEt) ₂ (dppen)] (6) obtained by ESI-MS and simulated isotope patterns of the corresponding ion	42
Fig. S67. Isotope profiles of [Ru(S ₂ COEt) ₂ (dppbz)] (7) obtained by ESI-MS and simulated isotope patterns of the corresponding ion	42
Fig. S68. Isotope profiles of [Ru(S ₂ COEt) ₂ (dppf)] (8) obtained by ESI-MS and simulated isotope patterns of the corresponding ion	43
Fig. S69. Isotope profiles of [Ru(S ₂ COEt) ₂ (DPEphos)] (9) obtained by ESI-MS and simulated isotope patterns of the corresponding ion	e 43
Part 4 – Crystallography	44
Table S1. Crystal data and structure refinement parameters for compounds 1–9	44
Part 5 – Cyclic voltammetry	45
Table S2. Electrochemical data obtained from cyclic voltammetry experiments for compounds $1-9$	45
Part 6 – Catalytic tests	46
Fig. S70. ³¹ P NMR spectra of the reaction mixtures obtained after heating benzoic acid and 1-hexyne in toluene at 160 °C for 30 min in the presence of $[Ru(S_2COEt)_2(diphos)]$ complexes 1–9	46
Fig. S71. Rate of nitrogen evolution monitored with a gas burette during the cyclopropanation of styrene catalyzed by $[Ru(S_2COEt)_2(diphos)]$ complexes 1–9 at 60 °C	47
Table S3. Ruthenium-catalyzed ATRA of CCl ₄ to MMA at various temperatures	48
Fig. S72. Plot of the total yields of monoadduct 15 and diadduct 16 for the ATRA of CCl ₄ to MMA	

catalyzed by complexes 1–9 at various temperatures	48
Fig. S73. ³¹ P NMR spectra of the reaction mixtures obtained after heating carbon tetrachloride and methyl methacrylate in toluene at 140 °C for 30 min in the presence of $[Ru(S_2COEt)_2(diphos)]$ complexes 1–9	49
Fig. S74. ³¹ P NMR spectra of the reaction mixtures obtained after heating carbon tetrachloride and methyl methacrylate in toluene at 160 °C for 30 min in the presence of $[Ru(S_2COEt)_2(diphos)]$ complexes 1–9	50
complexes 1-7.	

Fig. S4. ¹³C{¹H} APT NMR spectrum (101 MHz, CDCl₃, 298 K) of [Ru(S₂COEt)₂(dppm)] (1)

Fig. S5. ¹³C CPD and APT NMR spectra (101 MHz, CDCl₃, 298 K) of [Ru(S₂COEt)₂(dppm)] (1)

Fig. S7. ¹H NMR spectrum (400 MHz, CDCl₃, 298 K) of [Ru(S₂COEt)₂(dppe)] (2)

Fig. S9. ¹³C{¹H} NMR spectrum (101 MHz, CDCl₃, 298 K) of [Ru(S₂COEt)₂(dppe)](**2**)

Fig. S10. ¹³C{¹H} APT NMR spectrum (101 MHz, CDCl₃, 298 K) of [Ru(S₂COEt)₂(dppe)] (2)

Fig. S11. ¹³C CPD and APT NMR spectra (101 MHz, CDCl₃, 298 K) of [Ru(S₂COEt)₂(dppe)] (2)

Fig. S15. ³¹P NMR spectrum (162 MHz, CD₂Cl₂, 298 K) of [Ru(S₂COEt)₂(dppp)] (3)

Fig. S19. ¹³C{¹H} APT NMR spectrum (101 MHz, CDCl₃, 298 K) of [Ru(S₂COEt)₂(dppb)] (4)

Fig. S20. ¹³C CPD and APT NMR spectra (101 MHz, CDCl₃, 298 K) of [Ru(S₂COEt)₂(dppb)] (4)

Fig. S21. COSY NMR spectrum (400 MHz, CDCl₃, 298 K) of [Ru(S₂COEt)₂(dppb)] (4)

Fig. S22. ³¹P NMR spectrum (162 MHz, CDCl₃, 298 K) of [Ru(S₂COEt)₂(dppb)] (4)

Fig. S24. ¹H{³¹P} NMR spectrum (250 MHz, CDCl₃, 298 K) of [Ru(S₂COEt)₂(dpppe)] (**5**)

Fig. S26. ¹³C{¹H} APT NMR spectrum (101 MHz, CDCl₃, 298 K) of [Ru(S₂COEt)₂(dpppe)](5)

Fig. S27. ¹³C CPD and APT NMR spectra (101 MHz, CDCl₃, 298 K) of [Ru(S₂COEt)₂(dpppe)] (5)

Fig. S31. ¹³C{¹H} NMR spectrum (101 MHz, CDCl₃, 298 K) of [Ru(S₂COEt)₂(dppen)](6)

Fig. S32. ¹³C{¹H} APT NMR spectrum (101 MHz, CDCl₃, 298 K) of [Ru(S₂COEt)₂(dppen)] (6)

Fig. S33. ¹³C CPD and APT NMR spectra (101 MHz, CDCl₃, 298 K) of [Ru(S₂COEt)₂(dppen)] (6)

Fig. S34. ³¹P NMR spectrum (162 MHz, CDCl₃, 298 K) of [Ru(S₂COEt)₂(dppen)] (6)

Fig. S35. ¹H NMR spectrum (400 MHz, CDCl₃, 298 K) of [Ru(S₂COEt)₂(dppbz)] (7)

Fig. S37. ¹³C{¹H} NMR spectrum (101 MHz, CDCl₃, 298 K) of [Ru(S₂COEt)₂(dppbz)](7)

Fig. S38. ¹³C{¹H} APT NMR spectrum (101 MHz, CDCl₃, 298 K) of [Ru(S₂COEt)₂(dppbz)] (7)

Fig. S39. ¹³C CPD and APT NMR spectra (101 MHz, CDCl₃, 298 K) of [Ru(S₂COEt)₂(dppbz)] (7)

Fig. S40. ³¹P NMR spectrum (162 MHz, CDCl₃, 298 K) of [Ru(S₂COEt)₂(dppbz)] (7)

Fig. S41. ¹H NMR spectrum (400 MHz, CDCl₃, 298 K) of [Ru(S₂COEt)₂(dppf)] (8)

Fig. S43. ¹³C{¹H} NMR spectrum (101 MHz, CDCl₃, 298 K) of [Ru(S₂COEt)₂(dppf)](8)

Fig. S44. ¹³C{¹H} APT NMR spectrum (101 MHz, CDCl₃, 298 K) of [Ru(S₂COEt)₂(dppf)] (8)

.39.0 138.5 138.0 137.5 137.0 136.5 136.0 135.5 135.0 134.5 134.0 133.5 133.0 132.5 132.0 131.5 131.0 130.5 130.0 129.5 129.0 128.5 128.0 127.5 127.0 126.5 $\delta(\text{ppm})$

Fig. S45. ¹³C CPD and APT NMR spectra (101 MHz, CDCl₃, 298 K) of [Ru(S₂COEt)₂(dppf)] (8)

Fig. S46. ³¹P NMR spectrum (162 MHz, CDCl₃, 298 K) of [Ru(S₂COEt)₂(dppf)] (8)

Fig. S48. ¹³C{¹H} NMR spectrum (101 MHz, CDCl₃, 298 K) of [Ru(S₂COEt)₂(DPEphos)](9)

Fig. S49. ¹³C{¹H} APT NMR spectrum (101 MHz, CDCl₃, 298 K) of [Ru(S₂COEt)₂(DPEphos)] (9)

Fig. S50. ¹³C CPD and APT NMR spectra (101 MHz, CDCl₃, 298 K) of [Ru(S₂COEt)₂(DPEphos)] (9)

Fig. S51. ³¹P NMR spectrum (162 MHz, CDCl₃, 298 K) of [Ru(S₂COEt)₂(DPEphos)] (9)

Fig. S55. FT-IR spectrum (KBr) of [Ru(S₂COEt)₂(dppb)] (4)

Fig. S57. FT-IR spectrum (KBr) of [Ru(S₂COEt)₂(dppen)] (6)

Fig. S59. FT-IR spectrum (KBr) of [Ru(S₂COEt)₂(dppf)] (8)

Fig. S60. FT-IR spectrum (KBr) of [Ru(S₂COEt)₂(DPEphos)] (9)

Part 3 – Mass spectra

Fig. S61. Isotope profiles of [Ru(S₂COEt)₂(dppm)] (1) obtained by ESI-MS (in blue) and simulated isotope patterns of the corresponding ion (in black)

Fig. S62. Isotope profiles of [Ru(S₂COEt)₂(dppe)] (2) obtained by ESI-MS (in blue) and simulated isotope patterns of the corresponding ion (in black)

Fig. S63. Isotope profiles of [Ru(S₂COEt)₂(dppp)] (**3**) obtained by ESI-MS (in blue) and simulated isotope patterns of the corresponding ion (in black)

Fig. S64. Isotope profiles of [Ru(S₂COEt)₂(dppb)] (4) obtained by ESI-MS (in blue) and simulated isotope patterns of the corresponding ion (in black)

Fig. S65. Isotope profiles of [Ru(S₂COEt)₂(dpppe)] (**5**) obtained by ESI-MS (in blue) and simulated isotope patterns of the corresponding ion (in black)

Fig. S66. Isotope profiles of [Ru(S₂COEt)₂(dppen)] (6) obtained by ESI-MS (in blue) and simulated isotope patterns of the corresponding ion (in black)

Fig. S67. Isotope profiles of [Ru(S₂COEt)₂(dppbz)] (7) obtained by ESI-MS (in blue) and simulated isotope patterns of the corresponding ion (in black)

Fig. S68. Isotope profiles of [Ru(S₂COEt)₂(dppf)] (8) obtained by ESI-MS (in blue) and simulated isotope patterns of the corresponding ion (in black)

Fig. S69. Isotope profiles of [Ru(S₂COEt)₂(DPEphos)] (9) obtained by ESI-MS (in blue) and simulated isotope patterns of the corresponding ion (in black)

Part 4 – Crystallography

Complex	1	2	3	4	5
Chemical	$C_{31}H_{32}O_2P_2RuS_4$	$C_{32}H_{34}O_2P_2RuS_4$	$2(C_{33}H_{36}O_2P_2RuS_4)\cdot CH_2Cl_2$	$C_{34}H_{38}O_2P_2RuS_4$	$C_{35}H_{40}O_2P_2RuS_4$
formula					
M (g mol ⁻¹)	727.81	741.84	1596.66	769.89	783.92
Crystal system	Triclinic	Orthorhombic	Orthorhombic	Monoclinic	Triclinic
Space group	<i>P</i> -1	$P2_{1}2_{1}2_{1}$	Aba2	$P2_{1}/n$	<i>P</i> -1
a (Å)	9.0261(7)	11.1196(6)	20.1261(7)	12.8809(10)	11.3144(3)
b (Å)	11.1233(9)	14.0834(10)	21.5909(8)	16.5329(11)	11.4472(3)
<i>c</i> (Å)	16.9387(14)	20.6451(12)	16.4408(7)	16.3601(9)	13.6613(4)
α (°)	72.137(4)	90	90	90	94.926(2)
$\beta(^{\circ})$	80.855(4)	90	90	105.668(3)	93.661(2)
$\gamma(^{\circ})$	73.704(5)	90	90	90	97.305(2)
$V(Å^3)$	1548.7(2)	3233.1(3)	7144.2(5)	3354.6(4)	1743.53(8)
Z	2	4	4	4	2
$D_{\rm x}$ (g cm ⁻³)	1.561	1.524	1.484	1.524	1.493
μ (Mo K α) (mm ⁻¹)	0.908	0.871	0.867	0.843	0.812
Reflns collected	58899	51408	36877	41282	19804
Indpndt reflns	7671	9865	6994	8244	6359
R _{int}	0.055	0.098	0.095	0.048	0.055
R_1^a (all data)	0.038	0.057	0.069	0.040	0.075
wR_2^{o} (all data)	0.059	0.073	0.103	0.068	0.086
GOF^c on F^2	1.059	0.996	1.012	1.046	0.994

Table S1. Crystal data and structure refinement parameters for compounds 1–	9
---	---

Complex	6	7	8	9
Chemical formula	$C_{32}H_{32}O_2P_2RuS_4$	$C_{36}H_{34}O_2P_2RuS_4$	$C_{40}H_{38}FeO_2P_2RuS_4$	$C_{42}H_{38}O_3P_2RuS_4$
M (g mol ⁻¹)	739.82	789.88	897.8	881.97
Crystal system	Orthorhombic	Triclinic	Monoclinic	Triclinic
Space group	$P2_{1}2_{1}2_{1}$	<i>P</i> –1	$P2_{1}/n$	<i>P</i> –1
a (Å)	11.301(2)	11.3572(7)	19.1300(9)	10.8511(6)
b (Å)	13.968(3)	11.7146(10)	9.7269(3)	11.1779(7)
<i>c</i> (Å)	20.344(3)	13.7193(12)	22.0104(10)	17.2515(10)
α (°)	90	95.488(6)	90	82.595(4)
β (°)	90	105.893(5)	115.313(2)	73.977(3)
$\gamma(^{\circ})$	90	96.247(5)	90	73.322(3)
$V(Å^3)$	3211.4(10)	1730.0(2)	3702.4(3)	1923.7(2)
Z	4	2	4	2
$D_{\rm x}$ (g cm ⁻³)	1.53	1.516	1.611	1.523
μ (Mo K α) (mm ⁻¹)	0.877	0.819	1.148	0.748
Reflns collected	30577	32670	56273	35910
Indpndt reflns	7935	8558	7566	9179
R _{int}	0.093	0.083	0.108	0.047
R_1^a (all data)	0.069	0.072	0.065	0.050
$wR_2^{\ b}$ (all data)	0.078	0.093	0.083	0.077
GOF^c on F^2	0.98	0.989	1.017	1.067

 $\frac{|0.007|}{|a|R_1 = \sum ||F_0| - |F_c|| / \sum |F_0|. \ b \ wR_2 = [(\sum w(F_0^2 - F_c^2)^2 / \sum |F_0|^2)]^{1/2}. \ c \ \text{GOF} = [\sum [w(F_0^2 - F_c^2)^2] / (N_0 - N_v)]^{1/2}}{(N_0 = \text{number of observations}; N_v = \text{number of variables}).}$

Part 5 – Cyclic voltammetry

Complex	$I_{\rm p,ox}$ (mA/cm ²)	$I_{\rm p,red} ({\rm mA/cm^2})$	$E_{\mathrm{p,ox}}(\mathrm{V})$	$E_{\rm p,red}({\rm V})$	$E_{1/2}(V)^{b}$
1 (dppm)	0.192	-0.097	0.785	0.551	0.668
2 (dppe)	0.140	-0.107	0.861	0.676	0.769
3 (dppp)	0.183	-0.124	0.857	0.661	0.759
4 (dppb)	0.232	-0.190	0.841	0.645	0.743
5 (dpppe)	0.275	-0.215	0.824	0.655	0.740
6 (dppen)	0.305	-0.227	0.890	0.710	0.800
7 (dppbz)	0.224	-0.174	0.861	0.684	0.773
8 (dppf)	0.121	-0.113	0.764	0.525	0.645
9 (DPEphos)	0.276	-0.238	0.754	0.590	0.672

Table S2. Electrochemical data obtained from cyclic voltammetry experiments for compounds 1–9^a

^a Peak current densities (I_p) and peak potentials (E_p) correspond to the Ru^{3+}/Ru^{2+} redox couple.

^b $E_{1/2} = (E_{p,ox} + E_{p,red})/2.$

Part 6 – Catalytic tests

Fig. S70. ³¹P NMR spectra of the reaction mixtures obtained after heating benzoic acid and 1-hexyne in toluene at 160 °C for 30 min in the presence of $[Ru(S_2COEt)_2(diphos)]$ complexes **1–9** (a sealed capillary tube containing Ph₃PO in CD₂Cl₂ was used as an external reference)

Fig. S71. Rate of nitrogen evolution monitored with a gas burette during the cyclopropanation of styrene catalyzed by $[Ru(S_2COEt)_2(diphos)]$ complexes 1–9 at 60 °C

Temperature (°C)	100	110	115	120	125	130	140	150	155	160
Catalyst	Yield (%) ^b									
$[Ru(S_2COEt)_2(dppm)] (1)$		0	43	62	78	90	98	100	100	100
$[Ru(S_2COEt)_2(dppe)] (2)$				7	12	18	54	81	94	96
$[Ru(S_2COEt)_2(dppp)] (3)$				0	2	5	10	51	68	83
$[Ru(S_2COEt)_2(dppb)] (4)$				0	0	2	3	21	45	77
$[Ru(S_2COEt)_2(dpppe)] (5)$	5	20	38	50	62	72	81	84	84	83
$[Ru(S_2COEt)_2(dppen)] (6)$				0	3	7	18	34	95	100
$[Ru(S_2COEt)_2(dppbz)] (7)$						3	4	28	42	60
$[Ru(S_2COEt)_2(dppf)] (8)$							2	35	39	50
$[Ru(S_2COEt)_2(DPEphos)] (9)$				0	0	2	5	14	30	47

Table S3. Ruthenium-catalyzed ATRA of CCl4 to MMA at various temperatures^a

^a All reactions were performed in toluene for 0.5 h with $[Ru^{II}]_0$: $[MMA]_0$: $[CCl_4]_0 = 1 : 200 : 800$ and $[MMA]_0 = 1$ M. ^b Yields are based on the formation of monoadduct **15** and diadduct **16** and were determined by GC using dodecane as an internal standard (relative errors are ±5%).

Fig. S72. Plot of the total yields of monoadduct **15** and diadduct **16** for the ATRA of CCl₄ to MMA catalyzed by complexes **1–9** at various temperatures (see Table S3 for the experimental conditions).

Fig. S73. ³¹P NMR spectra of the reaction mixtures obtained after heating carbon tetrachloride and methyl methacrylate in toluene at 140 °C for 30 min in the presence of $[Ru(S_2COEt)_2(diphos)]$ complexes **1–9** (a sealed capillary tube containing DMSO-*d*₆ was used for external lock)

Fig. S74. ³¹P NMR spectra of the reaction mixtures obtained after heating carbon tetrachloride and methyl methacrylate in toluene at 160 °C for 30 min in the presence of $[Ru(S_2COEt)_2(diphos)]$ complexes **1–9** (a sealed capillary tube containing DMSO-*d*₆ was used for external lock)