Supplementary Information

Naphthalene containing amino-ether macrocycle based Cu(II) templated

[2]pseudorotaxanes and OFF/ON fluorescence switching via axle

substitution

Somnath Bej and Pradyut Ghosh*

School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B

Raja S. C. Mullick Road, Kolkata 700032, India.E-mail: icpg@iacs.res.in

List of contents

1. Characterization of compound A (Figure 1S- Figure 3S)	3S-4S
2. Characterization of compound B (Figure 4S- Figure 6S)	48-58
3. Characterization of NaphMC (Figure 7S- Figure 9S)	6 S-7S
4. (A)UV/Vis and(B) emission spectra of NaphMC in dry THF (Figure 10S)	7 S
5. Characterization of compound D (Figure 11S- Figure 13S)	8S-9S
6. Characterization of compound L3 (Figure 14S- Figure 15S)	9S-10S
7. (A) UV/Vis and (B) emission spectra of L3 in dry THF (Figure 16S)	10S
8. Synthetic route of the NaphMC-Cu ^{II} complex (Scheme 1S)	10S
9. ESI-MS spectrum of NaphMC-Cu ^{II} complex (Figure 17S)	11S
10. Characteristic UV/Vis spectra of NaphMC-Cu ^{II} complex (Figure 18S- Figur	e 19S) 11S
11. Molar ratio plot and nonlinear 1:1 curve fitting of NaphMC-Cu ^{II} complex fro	om UV/Vis
titration experiment (Figure 20S- Figure 21S)	128
12. Synthetic route of the pseudorotaxanes [CuPR1-CuPR3] (Scheme 2S)	138
13. ESI-MS spectra of CuPR1, CuPR2 and CuPR3 (Figure 22S- Figure 24S)	138-148

14. Characteristic UV/Vis spectra of CuPR1 and CuPR2 (Figure 25S-Figure 26S)	158
15. Molar ratio plots from UV/Vis titration experiment of the formation of CuPR1	and
CuPR2 (Figure 27S-Figure 28S)	16S
16. Nonlinear 1:1 curve fitting plots of the formation of CuPR1 and CuPR2 from UV	//Vis
titration experiment (Figure 29S-Figure 30S)	17S
17. Characteristic UV/Vis spectra of CuPR3 (Figure 31S)	18S
18. EPR Spectra of CuPR1-CuPR3 in DMF at 80K (Figure 32S- Figure 34S) 18S-	19S
19. Calculated EPR values of CuPR1-CuPR3 in DMF at 80K (Table 1S)	19S
20. Characteristic UV/Vis spectra of (A) CuPR1, CuPR2 and CuPR3 in CH ₃ CN	(B)
CuPR1, CuPR2, CuPR3 and Cu(ClO ₄) ₂ in DMF medium at 298 K (Figure 35S)	19S

21. Crystallographic details of CuPR1 and CuPR2 (Figure 36S-41S, Table 2S-Table 4S)

20S-22S

22. Equivalence plot, molar ratio plot and nonlinear 1:1 curve fitting plot from emission titration experiment for the formation of CuPR3 (Figure 42S- Figure 44S)
23S-24S
23. Molar ratio plot of titration (UV/Vis study) between CuPR3 with L1 (Figure 45S)
24S
24. Equivalence plot, molar ratio plot and nonlinear 1:1 curve fitting plot from emission titration experiment between CuPR3 with L1 in dry THF (Figure 46S- Figure 48S)
25S-26S
25. ESI-MS spectrum of resultant titrated solution from titration between CuPR3 with L1 (Figure 49S)
26S

26. Comparable emission studies of L3, [L3+ Cu(II)] and [L3+NaphMC.Cu(II) complex](Figure 50S)

Figure 1S: ¹H-NMR spectrum of compound A in CDCl₃ (500 MHz) at 298 K.

Figure 2S: ¹³C-NMR spectrum of compound A in CDCl₃ (100 MHz) at 298 K.

Figure 3S: ESI-MS(+ve) spectrum of compound A.

Figure 4S: ¹H-NMR spectrum of compound **B** in CDCl₃ (500 MHz) at 298 K.

Figure 5S: ¹³C-NMR spectrum of compound **B** in CDCl₃ (100 MHz) at 298 K.

Figure 6S: ESI-MS (+ve) spectrum of compound B.

Figure 7S: ¹H-NMR spectrum of **NaphMC** in CDCl₃ (400 MHz) at 298 K.

Figure 8S:¹³C-NMR spectrum of NaphMC in CDCl₃ (125 MHz) at 298 K.

Figure 9S: ESI-MS(+ve) spectrum of NaphMC.

Figure 10S: (A) UV/Vis and (B) emission spectra of NaphMC(1 X 10^{-5} M) in dry THF at 298 K, λ_{exc} = 300 nm.

Figure 11S:¹H-NMR spectrum of compound **D** in CDCl₃ (500 MHz) at 298 K.

Figure 12S:¹³C-NMR spectrum of compound **D** in CDCl₃ (125 MHz) at 298 K.

Figure 13S: ESI-MS(+ve) spectrum of compound **D**.

Figure 14S:¹H-NMR spectrum of L3 in CDCl₃ (500 MHz) at 298 K.

Figure 16S: (A) UV/Vis and (B) emission spectra of L3 (1 X 10^{-5} M) in dry THF at 298 K, λ_{exc} = 362 nm.

Scheme 1S. Synthetic route of the NaphMC-Cu^{II} complex [S= solvent molecule].

Figure 17S: ESI-MS(+ve) spectrum of NaphMC-Cu^{II} complex.

Figure 18S: Characteristic UV/Vis spectrum of NaphMC-Cu^{II} complex in CH₃OH at 298K.

Figure 19S: Characteristic UV/Vis spectrum of NaphMC-Cu^{II} complex in CH₃CN at 298 K.

Figure 20S: Molar ratio plot from UV/Vis titration experiment between NaphMC with $Cu(ClO_4)_2$.

Figure21S: Nonlinear 1:1 curve fitting to determine binding constant for **NaphMC-Cu^{II}** complex from UV/Vis titration experiment in MeOH.

Scheme2S. Synthetic route of [2]pseudorotaxanes, CuPR1- CuPR3.

Figure22S: ESI-MS (+ve) spectrum of [2]pseudorotaxane **CuPR1** (inset shows the isotopic distribution pattern corresponding to $[NaphMC.Cu^{II}.L1]^{2+}$ with blue line for the experimental and black line for calculated pattern).

Figure 23S: ESI-MS (+ve) spectrum of [2]pseudorotaxane **CuPR2** (inset shows the isotopic distribution pattern corresponding to $[NaphMC.Cu^{II}.L2]^{2+}$ with blue line for the experimental and black line for calculated pattern).

Figure 24S: ESI-MS (+ve) spectrum of [2]pseudorotaxane **CuPR3** (inset shows the isotopic distribution pattern corresponding to [**NaphMC.Cu^{II}.L3.** ClO_4]⁺ with blue line for the experimental and black line for calculated pattern).

Figure 25S: Characteristic UV/Vis spectrum of CuPR1 in CH₃CN at 298 K.

Figure 26S: Characteristic UV/Vis spectrum of CuPR2 in CH₃CN at 298 K.

Figure 27S: Molar ratio plot from UV/Vis titration experiment between NaphMC-Cu^{II} with L1.

Figure 28S: Molar ratio plot from UV/Vis titration experiment between NaphMC-Cu^{II} with L2.

Figure 29S: Nonlinear 1:1 curve fitting plot of formation of CuPR1 complex from UV/Vis titration experiment.

Figure 30S: Nonlinear 1:1 curve fitting plot of formation of CuPR2 complex from UV/Vis titration experiment.

Figure 31S: Characteristic UV/Vis spectrum at 298 K (A) **CuPR3** in THF at UV region, (B) **CuPR3** at Visible region in THF.

Figure 32S: EPR spectrum of CuPR1 in DMF at 80K.

Figure 33S: EPR spectrum of CuPR2 in DMF at 80K.

Figure 34S: EPR spectrum of CuPR3 in DMF at 80K.

```
Table 1S. g_{\parallel} > g_{\perp} values<sup>a</sup> of CuPR1-CuPR3 from EPR spectra in DMF
```

[2]pseudorotaxane	g∥	g⊥
CuPR1	2.09	1.99
CuPR2	2.17	2.02
CuPR3	2.15	2.02

^agl and g \perp values^{2,3} from the EPR spectrum analyzed by the following equation¹:

 $hv = g\beta B$,

g=71.4484v (in GHz)/B (in mT)

[where, v= Microwave frequency, B= Magnetic field, β = Bohr magneton constant, h = Planck's constant].

Figure 35S: Characteristic UV/Vis spectra of (A) CuPR1, CuPR2 and CuPR3 in CH₃CN and (B) CuPR1, CuPR2, CuPR3 and Cu(ClO₄)₂ in DMF medium at 298 K.

Crystallographic details of CuPR1 and CuPR2

Figure 36S: Single Crystal X-ray structure of CuPR1 (Ball and stick model).

Figure 37S: Geometry of the Cu^{II} center of **CuPR1** ($\tau = 0.516$).

Figure 38S: Single Crystal X-ray structure of CuPR1 (ellipsoid model using platon version).

Figure 39S: Single Crystal X-ray structure of CuPR2 (Ball and stick model).

Figure 40S: Geometry of the Cu^{II} centre of **CuPR2** ($\tau = 0.821$).

Figure 41S: Single Crystal X-ray structure of CuPR2 (ellipsoid model using platon version).

CuPR1				CuPR2			
N1	-Cu1 -N2	81.6(3)	N1	-Cu1	-N2	84.07(11)	
N1	-Cu1 -N3	95.7(3)	N1	-Cu1	-N3	109.27(11)	
N1	-Cu1 -N4	105.7(3)	N1	-Cu1	-N4	130.09(11)	
N1	-Cu1 -N5	145.3(3)	N1	-Cu1	-N5	95.45(11)	
N2	-Cu1 -N3	176.3(3)	N2	-Cu1	-N3	83.86(11)	
N2	-Cu1 -N4	99.7(3)	N2	-Cu1	-N4	100.42(11)	
N2	-Cu1 -N5	96.5(3)	N2	-Cu1	-N5	179.06(12)	
N3	-Cu1 -N4	83.4(3)	N3	-Cu1	-N4	120.64(10)	
N3	-Cu1 -N5	84.3(3)	N3	-Cu1	-N5	95.55(11)	
N4	-Cu1 -N5	108.7(3)	N4	-Cu1	-N5	80.51(11)	

Table 2S. N-Cu-N bond angle of CuPR1 and CuPR2

Table 3S. N-C-C-N torsional angle of CuPR1 and CuPR2

CuPR1				CuPR2					
N3	-C31	-C32	-N4	57.4(9)	N1	-C20	-C21	-N2	-48.0(4)
N3	-C33	-C34	-N5	-46.6(10)	N2	-C22	-C23	-N3	55.2(4)
N1	-C41	-C42	-N2	2.1(13)	N4	-C41	-C42	-N5	-1.8(4)

Table 4S. Cu-N bond distance of CuPR1 and CuPR2

CuPR1			CuPR2			
Cu1	-N1	2.067(9)	Cu1	-N1	2.111(3)	
Cu1	-N2	2.018(7)	Cu1	-N2	2.044(3)	
Cu1	-N3	2.027(8)	Cu1	-N3	2.180(3)	
Cu1	-N4	2.282(8)	Cu1	-N4	2.072(3)	
Cu1	-N5	2.091(8)	Cu1	-N5	1.997(3)	

Figure 42S: Equivalence plot between L3 and NaphMC-Cu^{II} (from emission titration experiment).

Figure 43S: Molar ratio plot of titration between NaphMC-Cu^{II} with L3 (from emissiontitration experiment).

Figure 44S: Nonlinear 1:1 curve fittingplot of formation of CuPR3 complex from emission titration experiment.

Figure 45S: Molar ratio plot of titration (UV/Vis study) between CuPR3with L1.

Figure 46S: Equivalence plot from emission titration experiment between CuPR3 with L1 in dry THF.

Figure 47S: Molar ratio plot of titration (PL study) between CuPR3 with L1.

Figure 48S: Nonlinear 1:1 curve fitting from emission titration experiment between CuPR3 with L1 in dry THF.

Figure 49S: ESI-MS (+ve) spectrum of resultant titrated solution from titration between CuPR3 with L1.

Figure50S: Comparable emission studies of **L3**, [**L3**+ Cu(II)] and [**L3**+**NaphMC**.Cu(II) complex].

REFERENCES

- 1. W. R. Hagen, Dalton Trans., 2006, 4415-443,
- 2. S. Gilch, O. Meyer, I. Schmidt, Biometals ., 2010, 23, 613-622,
- 3. L. Husarikova, Z. Repicka, J. Moncol, D. Valigura, M. Valko, M. Mazur., *Appl Magn Reson*, 2013, **44**,571–582.