Supplementary Information

Upconversion core/shell nanoparticles with lowered surface quenching for fluorescence detection of Hg²⁺ ion

Lichun Shi,^{a,*} Junshan Hu,^{*,c} Xiaofeng Wu,^{*,b2} Shiping Zhan,^{b1} Shigang Hu,^{b2} Zhijun Tang,^{b2} Mingshu Chen,^a Yunxin Liu^{*,b1}

- ^a Key Laboratory of Organic Polymer Photoelectric Materials, School of Science, Xijing University, Xi'an, 710123 China.
- ^{b1} Department of Physics and Electronic Science, ^{b2} Department of Information Science, Hunan University of Science and Technology, Xiangtan 411201 China.

^c School of Physics, University of Electronic Science and Technology of China, Chengdu, 610054 China.

* This corresponding should be addressed to <u>lyunxin@163.com</u>(Y Liu), and <u>hujunshan1224@163.com</u>(J Hu) and <u>xfwuvip@126.com</u>(X Wu).

I. Quantum yield

For calculating the quantum yield, the fluorescent spectra of core and core/shell UCNPs with the same amount of nanoparticles were measured and shown in **Fig. S1**.

Fig. S1 Fluorescent spectra of core and core/shell UCNPs with the same amount of nanoparticles.

Based on the following Equation (1), the upconversion quantum yields (QY) for red and green emission are calculated and listed in **Table S1**.

Sample	QY	QY
	(green emission)	(red emission)
NaGdF ₄ :Yb ³⁺ ,Er ³⁺	0.152%	0.016%
NaGdF ₄ :Yb ³⁺ ,Er ³⁺ @NaYF ₄	0.833%	0.095%

Table S1. The quantum efficiency of the samples.

The QY is defined as:

$$QY = \frac{\eta_{UE}}{\sum E_{\lambda} \times V_{IIRST}}$$
(1)

where QY is the quantum yield, the energetic upconverison efficiency η_{UE} of NaGdF₄:Yb³⁺,Er³⁺@NaYF₄ core/shell nanoparticles is approximately calculated to be

0.833% according to QY of 0.3% from Frank C. J. M. van Veggel,s reporter in [Nanoscale, 2010, 2, 1417–1419] due to a fact that the upconversion efficiency of NaGdF₄:Yb³⁺,Er³⁺ nanoparticles is close to that of NaYF₄:Yb³⁺,Er³⁺. E_{λ} is the energy of defined wavelength, V_{IIRST} is the Intensity Ratio of Single emission band to Total emissions.

Fig. S2 Fluorescence decay of 540 nm green emission of core UCNPs, core UCNPs@N719, Core/shell UCNPs and core/shell UCNPs@ N719.

The decay time of UCNPs has be measured before and after it reacts with N719 and presented in **Fig. S2**. The lifetime of 540 nm green emission of core UCNPs and N719@core UCNPs is addressed to be 0.134 ms and 0.12 ms, respectively, according to the decay curves, while those of core/shell UCNPs and N719@core/shell UCNPs are addressed to be 0.484 ms and 0.41 ms, respectively. The FRET efficiency can be calculated by the following equation **[J. Phys. Chem. B 2006, 110, 26068-26074]**:

$$E=1-(2)$$

where τ_{da} and τ_d are the fluorescence lifetimes of a donor in the presence and absence of an acceptor. The calculated FRET efficiency of N719@core UCNPs(τ_{da} =0.12 ms, τ_d =0.134 ms) and N719@core/shell UCNPs(τ_{da} =0.41 ms, τ_d =0.484 ms) is equal to 10.4% and 15.3%, respectively, according to the fluorescence lifetimes.