Second Revised ESI for DT-ART-07-2018-002895

The η^1 -H–C···Hg agostic interactions in mercury complexes

of N-confused porphyrin

Yi-Chun Chen,^a Jo-Yu Tung,^{*b} Ta-Kang Liu,^c Wei-Joe Tsai,^c Hsiang-Yin Lin^c, Yu-Chang Chang^d and Jyh-Horung Chen^c

^aDepartment of Radiology, Taipei Veterans General Hospital, Taipei 11217, Taiwan ^bDepartment of Occupational Safety and Health, Chung Hwai University of Medical Technology, Tainan 717, Taiwan. ^cDepartment of Chemistry, National Chung Hsing University, Taichung 40227, Taiwan. ^dDepartment of Applied Chemistry, Providence University, Taichung 43301, Taiwan.

*Corresponding Author. Tel: +886 62674567x815; fax: +886 62894028 (J. Y. Tung)

E-mail addresses: jumpjump612@gmail.com (Y. C. Chen), JyhHChen@dragon.nchu.edu.tw (J. H. Chen), joyuting@mail.hwai.edu.tw (J. Y. Tung), vickchang@pu.edu.tw (Y. C. Chang).

Contents

1. Preparation of 8	S3
2. Preparation of 9.	S3
3. Fig. S1. X-ray structures of (a) $4 \cdot C_8 H_{10}$, (b) 5, (c) 6, (d) 7, (e) 8, and (f) 9	S5
4. Fig. S2. ¹ H NMR spectra for 5	S8
5. Fig. S3. ¹ H NMR spectra for 6	S9
6. Fig. S4. ¹ H NMR spectra for 8	. S10
7. Fig. S5. ¹ H NMR spectra for 9	S 11
8. Fig. S6. ¹³ C NMR spectra for 5	. S12
9. Fig. S7. ¹³ C NMR spectra for 6	. S13
10. Fig. S8. ¹³ C NMR spectra for 7	. S14
11. Fig. S9. ¹³ C NMR spectra for 4	. S15
12. Fig. S10. ¹³ C NMR spectra for 8	. S16
13. Fig. S11. ¹³ C NMR spectra for 9	. S17
14. Fig. S12. UV-Vis spectra of 5	S18
15. Fig. S13. UV-Vis spectra of 6	S18
16. Fig. S14. UV-Vis spectra of 7	S19
17. Fig. S15. UV-Vis spectra of 4	S19
18. Fig. S16. UV-Vis spectra of 8	S20
19. Fig. S17. UV-Vis spectra of 9	S20
20. Comparison of empirical formula between data of X-ray diffraction and EA	
measurement	S21

Preparation of Hg(2-NCH₂COOCH₂C₆H₅-21-NCTPPH)Cl (8)

Compound 8 was prepared in 30 % yield in the same way as described foe 9, but using $HgCl_2$ and 12. Compound 8 was dissolved in acetone and layered with isopropanol (IPA) [IPA/acetone = 1:1 (v/v)] to afford dark green crystals for single-crystal X-ray analysis. ¹H NMR (599.89 MHz, CDCl₃, 298 K): δ 8.18 [d, $H_{\beta}(2)$, ${}^{3}J(H-H) = 4.8 Hz$; 8.10 [d, o-H(40, 44), ${}^{3}J(H-H) = 7.2 Hz$]; 8.02 [d, $H_{\beta}(13)$), ${}^{3}J(H-H) = 4.8$ Hz]; 8.00 [d, o-H(34, 38), ${}^{3}J(H-H) = 7.2$ Hz]; 7.86 [d, $H_{\beta}(8)$, ${}^{3}J(H-H) = 4.8 \text{ Hz and } {}^{4}J(Hg-H) = 20.4 \text{ Hz}$; 7.85 [d, $H_{\beta}(7)$, ${}^{3}J(H-H) = 4.8 \text{ Hz}$ and ${}^{4}J(\text{Hg-H}) = 20.4 \text{ Hz}$; 7.81 [bs, o-H (22, 26; 28, 32)]; 7.70 [d, m-H(41, 100)] 43), ${}^{3}J(\text{H-H}) = 7.2 \text{ Hz}$; 7.68 [t, p-H(42), ${}^{3}J(\text{H-H}) = 7.2 \text{ Hz}$]; 7.61 [d, m-H(35, 37), ${}^{3}J(\text{H-H}) = 7.2 \text{ Hz}$; 7.60 [d, H_β(3), ${}^{3}J(\text{H-H}) = 4.8 \text{ Hz}$; 7.59 [d, H_β(12), ${}^{3}J(\text{H-H}) =$ 4.8 Hz]; 7.57 [m, *m*-H(23, 25; 29, 31) and *p*-H(26; 30)]; 7.50 [t, *p*-H(36), ${}^{3}J$ (H-H) = 7.2 Hz]; 7.40 [d, m-H(50, 52), ${}^{3}J$ (H-H) = 7.2 Hz]; 7.39 [m, p-H(51)]; 7.26 [d, o-H(49, 53), ${}^{3}J(H-H) = 7.2 \text{ Hz}$; 6.53 [d, H(19), ${}^{4}J(H-H) = 1.2 \text{ Hz}$; 5.03 [d, H(47A), ${}^{4}J(H-H)$ = 12.0 Hz]; 4.99 [d, H(47B), ${}^{4}J$ (H-H) = 12.0 Hz]; 4.56 [d, H(45A), ${}^{2}J$ (H-H) = 18.6 Hz]; 4.11 [d, H(45B), ${}^{2}J$ (H-H) = 18.6 Hz]; -0.02 [d, H(17), ${}^{4}J$ (H-H) = 1.8 Hz and J(Hg-H) = 35.7 Hz]. MS (ESI), m/z (assignment, rel. intensity): 999.4 (M⁺, 29.07 %), 963.4 ([M-Cl]⁺, 41.74 %), 763.5 ([M-HgCl+H]⁺, 100 %). Anal. Calcd. for C₅₃H₃₇ClHgN₄O₂: C, 64.03; H, 3.98; N, 5.53. Found: C, 64.00; H, 3.68; N, 5.98. UV-vis spectrum, λ (nm) [$\epsilon \times 10^{-3}$ (M⁻¹ cm⁻¹)] in CH₂ Cl₂ at 300 K: 354 (22.3), 477 (70.9), 603 (4.1), 664 (5.3), 725 (8.7).

Preparation of Hg(2-NCH₂COOCH₂C₆H₅-21-NCTPPH)I (9)

A mixture of the free base 2-NCH₂COOCH₂C₆H₅NCTPPH (**12**) (0.0382 g, 0.05 mmol) and HgI₂ 0.0908 g (0.2 mmol) in pyridine (10 mL) was refluxed at 130°C for

2 h (Scheme 1). After concentrating the reaction mixture, the residue was dissolved in CH₂Cl₂, dried with anhydrous MgSO₄, and filtered. The filtrate was concentrated and the residue was purified over an aluminum oxide 90 column (15 g, neutral, activity I) using CH₂Cl₂ as the eluent to yield dark green solution of **9**. Removal of the solvent gave 9 as a dark green solid (0.0180 g, 0.0165 mmol, 33%), which was dissolved in dichloromethane and layered with ethyl acetate $[EA/CH_2Cl_2 = 1:1 (v/v)]$ to afford dark green crystals for single-crystal X-ray analysis. ¹H NMR (599.93 MHz, CDCl₃, 298 K): $\delta 8.18$ [d, H_B(2), ³J (H-H) = 4.8 Hz]; 8.11 [d, o-H(40, 44), ³J(H-H) = 7.2 Hz]; 8.03 [d, $H_{\beta}(13)$]; 8.02 [d, *o*-H(34, 38), ³*J*(H-H) = 7.2 Hz]; 7.88 [d, $H_{\beta}(8)$, ³*J*(H-H) = 4.8 Hz and ${}^{4}J(\text{Hg-H}) = 18.0 \text{ Hz}$; 7.87 [d, H_β(7), ${}^{3}J(\text{H-H}) = 4.8 \text{ Hz}$ and ${}^{4}J(\text{Hg-H}) =$ 18.0 Hz]; 7.82 [bs, o-H (22, 26; 28, 32)]; 7.71 [d, m-H(41, 43), ${}^{3}J$ (H-H) = 7.2 Hz]; 7.75[d, m-H(35, 37), ${}^{3}J$ (H-H) = 7.8 Hz]; 7.69 [d, p-H(42), ${}^{3}J$ (H-H) = 7.2 Hz]; 7.63 [d, $H_{\beta}(3)$, ${}^{3}J(H-H) = 4.8 \text{ Hz}$; 7.61 [d, $H_{\beta}(12)$, ${}^{3}J(H-H) = 4.8 \text{ Hz}$]; 7.60 [d, *m*-H(35, 37), ${}^{3}J(\text{H-H}) = 7.2 \text{ Hz}$; 7.58 [m, m-H(23, 25; 29, 31) and p-H(26; 30)]; 7.50 [t, p-H(36), ${}^{3}J$ (H-H) = 7.2 Hz]; 7.41 [d, m-H(50, 52), ${}^{3}J$ (H-H) = 7.2 Hz]; 7.41 [m, p-H(51)]; 7.30 [d, o-H(49, 53), ${}^{3}J$ (H-H) = 7.2 Hz]; 6.59 [d, H(19), ${}^{4}J$ (H-H) = 1.2 Hz]; 5.09 [d, H(47A), ${}^{4}J$ (H-H) = 12.0 Hz]; 5.02 [d, H(47B), ${}^{4}J$ (H-H) = 12.0 Hz]; 4.59 [d, H(45A), ${}^{2}J(H-H) = 18.6 Hz$; 4.18 [d, H(45B), ${}^{2}J(H-H) = 18.6 Hz$]; -0.11 [d, H(17), ${}^{4}J$ (H-H) = 1.8 Hz and J(Hg-H) = 33.0 Hz]. MS (ESI), m/z (assignment, rel. intensity): 1090.1 (M⁺, 26.12 %), 762.4 ([M-HgI+H]⁺, 67.95 %), 613.4 $[M-HgI+H-CH_2COOCH_2C_6H_5]^+$, 42.74 %). Anal. Calcd. for $C_{53}H_{37}HgIN_4O_2$: C, 58.43; H, 3.42; N, 5.14. Found: C, 58.13; H, 3.42; N, 5.16. UV-vis spectrum, λ (nm) $[\epsilon \times 10^{-3} (M^{-1} cm^{-1})]$ in CH₂ Cl₂ at 300 K: 356 (17.9), 479 (60.5), 606 (1.7), 659 (2.4), 730 (5.7).

Fig. S1. X-ray structures of (a) $4 \cdot C_8 H_{10}$, (b) 5, (c) 6, (d) 7, (e) 8, and (f) 9 with ellipsoids drawn at 30 % probability. All hydrogen atoms except H(17A) and H(19A), and solvent are omitted for clarity.

Fig S2. ¹H NMR spectra for **5** at 599.93 MHz in CDCl₃ at 298 K : (a) entire spectrum; (b) expansion of the region 7.4-8.4 ppm of (a) showing six different β -pyrrole protons H_{β} and phenyl protons (*o*-H, *m*, *p*-H).

Fig S3. ¹H NMR spectra for **6** at 599.87 MHz in CDCl₃ at 298 K : (a) entire spectrum; (b) expansion of the region 7.4-8.4 ppm of (a) showing six different β -pyrrole protons H_{β} and phenyl protons (*o*-H, *m*, *p*-H).

Fig S4. ¹H NMR spectra for **8** at 599.93 MHz in CDCl₃ at 298 K : (a) entire spectrum; (b) expansion of the region 7.2-8.4 ppm of (a) showing six different β -pyrrole protons H_{β} and phenyl protons (*o*-H, *m*, *p*-H).

Fig S5. ¹H NMR spectra for **9** at 599.93 MHz in CDCl₃ at 298 K : (a) entire spectrum; (b) expansion of the region 7.2-8.4 ppm of (a) showing six different β -pyrrole protons H_{β} and phenyl protons (*o*-H, *m*, *p*-H).

Fig. S6. ^{13}C NMR spectra for **5** at 150.87 MHz in CDCl_3 at 25°C

 13 C NMR (150.87 MHz, CDCl₃, 25°C, partial data) of **5** :

δ 167.3 [s, C(46)]; 163.6 (s) and 153.4 (s) for C_α(1) and C_α(4); 163.2 (s) and 150.9 (s) for C_α(11) and C_α(14); 159.6 (s) and 158.0 (s) for C_α(6) and C_α(9); 140.4 [s, C(33)]; 139.3 [s, C(39)]; 138.2 [s, C(15)]; 137.0 [s, C(34, 38)]; 134.7 [s, C(40, 44)]; 134.4 [s, C_β(13)]; 134.3 [s, C_β(7)]; 133.9 [s, C_β(8)]; 133.7 [s, C_β(2)]; 133.3 [s, C_β(3)]; 131.6 [s, C_β(12)]; 130.6 [s, C(18)]; 129.1 [s, C(36)]; 128.8 [s, C(42)]; 128.6[s, C(41, 43)]; 127.7 [s, C(35, 37)]; 126.5 [s, C(16)]; 125.0 [s, C(20)]; 123.6 [s, C_α(19)]; 79.8 [s, C(17)]; 61.6 [s, C(47)]; 50.2 [s, C(45)]; 14.0 [s, C(48)].

Fig. S7. ^{13}C NMR spectra for **6** at 150.87 MHz in CDCl_3 at 25°C

¹³C NMR (150.87 MHz, CDCl₃, 25°C, partial data) of **6** :

δ 167.2 [s, C(46)]; 163.4 (s) and 153.3 (s) for C_α(1) and C_α(4); 163.1 (s) and 150.9 (s) for C_α(11) and C_α(14); 159.6 (s) and 158.0 (s) for C_α(6) and C_α(9); 140.4 [s, C(33)]; 139.3 [s, C(39)]; 138.2 [s, C(15)]; 136.9 [s, C(34, 38)]; 134.7 [s, C(40, 44)]; 134.3 [s, C_β(13)]; 134.3 [s, C_β(7)]; 133.8 [s, C_β(8)]; 133.6 [s, C_β(2)]; 133.3 [s, C_β(3)]; 131.6 [s, C_β(12)]; 130.7 [s, C(18)]; 129.0 [s, C(36)]; 128.8 [s, C(42)]; 128.6[s, C(41, 43)]; 127.6 [s, C(35, 37)]; 126.5 [s, C(16)]; 124.8 [s, C(20)]; 123.9 [s, C_α(19)]; 80.2 [s, C(17)]; 61.6 [s, C(47)]; 50.3 [s, C(45)]; 14.0 [s, C(48)].

Fig. S8. ^{13}C NMR spectra for 7 at 150.87 MHz in CDCl3 at 25°C

¹³C NMR (150.87 MHz, CDCl₃, 25°C, partial data) of **7** :

δ 167.3 [s, C(46)]; 163.1 (s) and 153.1 (s) for C_α(1) and C_α(4); 162.9 (s) and 151.0 (s) for C_α(11) and C_α(14); 159.5 (s) and 158.0 (s) for C_α(6) and C_α(9); 140.5 [s, C(33)]; 139.4 [s, C(39)]; 137.8 [s, C(15)]; 136.8 [s, C(34, 38)]; 134.8 [s, C(40, 44)]; 134.4 [s, C_β(13)]; 134.2 [s, C_β(7)]; 133.7 [s, C_β(8)]; 133.6 [s, C_β(2)]; 133.2 [s, C_β(3)]; 131.5 [s, C_β(12)]; 130.9 [s, C(18)]; 128.9 [s, C(36)]; 128.7 [s, C(42)]; 128.6[s, C(41, 43)]; 127.6 [s, C(35, 37)]; 126.8 [s, C(16)]; 124.6 [s, C(20)]; 124.5 [s, C_α(19)]; 81.8 [s, C(17)]; 61.6 [s, C(47)]; 50.6 [s, C(45)]; 14.0 [s, C(48)].

Fig. S9. ^{13}C NMR spectra for 4 at 150.87 MHz in CDCl3 at 25°C

 ^{13}C NMR (150.85 MHz, CDCl_3, 25°C, partial data) of **4** :

 $\delta 163.1$ (s) and 152.9 (s) for $C_{\alpha}(11)$ and $C_{\alpha}(14)$; 162.7 (s) and 150.7 (s) for $C_{\alpha}(1)$ and $C_{\alpha}(4)$; 159.1 (s) and 157.8 (s) for $C_{\alpha}(6)$ and $C_{\alpha}(9)$; 140.5 [s, C(20)]; 136.9 [s, C(40, 44)]; 134.9 [s, C(34, 38)]; 134.2 [s, $C_{\beta}(2)$]; 134.1 [s, $C_{\beta}(7)$]; 133.8 [s, $C_{\beta}(8)$]; 133.6 [s, $C_{\beta}(13)$]; 133.0 [s, $C_{\beta}(12)$]; 131.6 [s, $C_{\beta}(3)$]; 131.2 [s, C(16)]; 128.9 [s, C(42)]; 128.8 [s, C (36)]; 128.6 [s, C(35, 37)]; 127.5 [s, C(41, 43)]; 126.0 [s, C(15)]; 125.8 [s, C(18)]; 123.1 [s, $C_{\alpha}(19)$]; 81.0 [s, C(17)]; 37.9 [s, C(45)].

Fig. S10. ^{13}C NMR spectra for 8 at 150.87 MHz in CDCl3 at 25°C

¹³C NMR (150.85 MHz, CDCl₃, 25°C, partial data) of **8** :

 δ 167.0 [s, C(46)]; 163.6 (s) and 153.5 (s) for C_α(1) and C_α(4); δ 163.3 (s) and 153.5 (s) for C_α(11) and C_α(14); 160.0 (s) and 158.1 (s) for C_α(6) and C_α(9); δ 140.4 [s, C(39)]; 139.2 [s, C(33)]; 138.2 [s, C(20)]; 136.9 [s, C(40, 44)]; 134.7 [s, C(34, 38)]; 134.7 [s, C(48)]; 134.4 [s, C_β(2)]; 134.3 [s, C_β(8)]; 133.9 [s, C_β(7)]; 133.7 [s, C_β(13)]; 133.3 [s, C_β(12)]; 131.7 [s, C_β(3)]; 130.7 [s, C(18)]; 129.1 [s, C(42)]; 128.9 [s, C(36)]; 128.4 (s) and 127.1 (s) for C(49, 53); 127.7 [s, C(41, 43)]; 127.3 [s, C(35, 37)]; 126.5 [s, C(16)]; 124.9 [s, C_α(19)]; 80.0 [s, C(17)]; 67.3 [s, C(47)]; 50.3 [s, C(45)]

Fig. S11. ^{13}C NMR spectra for 9 at 150.87 MHz in CDCl3 at $25^\circ\!\mathrm{C}$

¹³C NMR (150.85 MHz, CDCl₃, 25°C, partial data) of **9** :

 $\delta 167.0$ [s, C(46)]; 163.6 (s) and 151.0 (s) for C_a(1) and C_a(4); 162.9 (s) and 153.0 (s) for C_a(11) and C_a(14); 159.5 (s) and 158.0 (s) for C_a(6) and C_a(9); 140.5 [s, C(39)] ; 139.3 [s, C(33)] ; 137.7 [s, C(20)]; 136.8 [s, C(40, 44)] ; $\delta 134.7$ [s, C(34, 38)]; 134.6 [s, C(48)]; 134.4 [s, C_β(2)]; 134.2 [s, C_β(8)]; 133.7 [s, C_β(7)]; 133.6 [s, C_β(13)]; 133.2 [s, C_β(12)]; 133.2 [s, C_β(3)] ; 130.9 [s, C(18)]; 128.9 [s, C(42)]; 128.8 [s, C(36)]; 128.5 (s) and 127.1 (s) for C(49, 53); 127.6 [s, C(41, 43)]; 127.3 [s, C(35, 37)]; 126.8 [s, C(16)]; 124.5 [s, C_a(19)]; 81.9 [s, C(17)]; 67.3 [s, C(47)]; 50.6 [s, C(45)]

Fig. S12. UV-Vis spectra of 5 in CH_2Cl_2 at 300 K : 300 – 800 nm

Fig. S13. UV-Vis spectra of $\mathbf{6}$ in CH₂Cl₂ at 300 K : 300 – 800 nm

Fig. S14. UV-Vis spectra of 7 in CH_2Cl_2 at 300 K : 300 – 800 nm

Fig. S15. UV-Vis spectra of 4 in CH_2Cl_2 at 300 K : 300 – 800 nm

Fig. S16. UV-Vis spectra of $\mathbf{8}$ in CH_2Cl_2 at 300 K : 300 – 800 nm

Fig. S17. UV-Vis spectra of $\boldsymbol{9}$ in CH_2Cl_2 at 300 K : 300 – 800 nm

Comparison of empirical formula between data of X-ray diffraction

and EA measurement

The X-ray structure data were obtained from single crystal. Moreover, all of elemental analyses data were measured from the powder sample through recrystallization, not from single crystal. Hence, solvent molecule might be different between the data of X-ray diffraction and elemental analyses. Hence, X-ray diffraction data indicates the empirical formula of $4 \cdot C_8 H_{10}$ (or 5-9), but elemental analyses shows $4 \cdot 0.1 C_6 H_{14}$ (or $5 \cdot 0.4 C_8 H_{18}$, $6 \cdot 0.3 C_8 H_{18}$, $7 \cdot 0.2 C_3 H_7 NO$, **8**, **9**) for the same complexes. Compound **4** was dissolved in CH₂Cl₂ and layered with hexane to afford green powder sample for elemental analyses.