Supporting Information

Z-scheme MoS$_2$/g-C$_3$N$_4$ heterojunction for efficient visible light photocatalytic CO$_2$

reduction

Hao Qina,b, Rui-tang Guoa,b,c,*, Xing-yu Liua,b, Wei-guo Pana,b,*, Zhong-yi Wanga,b, Xu Shia,b, Jun-ying Tangc,d, Chun-ying Huanga,b

a. School of Energy Source and Mechanical Engineering, Shanghai University of Electric Power, Shanghai 200090, People’s Republic of China
b. Shanghai Engineering Research Center of Power Generation Environment Protection, Shanghai 200090, People’s Republic of China
c. Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, People’s Republic of China
d. College of Mechanical Engineering, Tongji University, Shanghai, 200092, People’s Republic of China

Corresponding author1: Rui-tang Guo

Email: grta@zju.edu.cn

Corresponding author2: Wei-guo Pan
In our experiment, CO were found to be the main reduction product and no other hydrocarbon product was detected. Furthermore, the oxidation product-O$_2$ and a small amount of competitive reduction product (H$_2$) were also detected. For the MSCN-10 sample, the average production rate of the products are calculated out and listed in Table 1 and the calculated molar ratios of electrons/holes according to the following equations (1 and 2) are 0.87 and 0.84 respectively, which is on the verge of 1:1. The deviation may be due to the adventitious oxygen in the suspension system or other undetected intermediates. Moreover, the high selective CO$_2$ reduction to CO in our experiment may be caused by the following reasons: active sites on the sample for CO$_2$ reduction reaction might be covered by the formed CO and intermediate products (·C), leaving insufficient elections contacted with CO$_2$ molecules to produce CH$_4$.\(^1\)

\[
\begin{align*}
2\text{H}_2\text{O} + 4\text{h}^+ & \rightarrow \text{O}_2 + 4\text{H}^+ \quad (1) \\
\text{CO}_2 + 2\text{H}^+ + 2\text{e}^- & \rightarrow \text{CO} + \text{H}_2\text{O} \quad (2)
\end{align*}
\]

<table>
<thead>
<tr>
<th>Sample</th>
<th>Reduction products</th>
<th>Oxidation products</th>
<th>Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CO</td>
<td>O$_2$</td>
<td>e$^-$: h$^+$</td>
</tr>
<tr>
<td></td>
<td>(μmol \cdot g$^{-1}$ \cdot h$^{-1}$)</td>
<td>(μmol \cdot g$^{-1}$ \cdot h$^{-1}$)</td>
<td></td>
</tr>
<tr>
<td>CN</td>
<td>2.85</td>
<td>1.65</td>
<td>0.87:1</td>
</tr>
<tr>
<td>MSCN-10</td>
<td>8.37</td>
<td>4.94</td>
<td>0.84:1</td>
</tr>
</tbody>
</table>

Table 1 The generation rate of the reduction and oxidation products for CN and MSCN-10.
Fig. S1 XRD patterns of the freshly prepared and used MSCN-10 after three times cycling.

References