Supporting Information

Tracking mitochondrial dynamics during apoptosis with phosphorescent fluorinated iridium(III) complexes

Chen Zhang,^{‡a} Kangqiang Qiu,^{‡ab} Chaofeng Liu,^a Huaiyi Huang,^a Thomas W. Rees,^a Liangnian Ji,^a Qianling Zhang,^{*b} and Hui Chao^{*ab}

 ^aMOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
^bCollege of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518055, P. R. China.

‡ These authors contributed equally to this work.

Email: ceschh@mail.sysu.edu.cn (H. Chao); zhql@szu.edu.cn (Q. Zhang).

Table of Contents

Scheme S1 Synthetic route of Ir1-Ir4	S2
Fig. S1 ES-MS spectrum of Ir1	
Fig. S2 ES-MS spectrum of Ir2	S4
Fig. S3 ES-MS spectrum of Ir3	
Fig. S4 ES-MS spectrum of Ir4	S6
Fig. S5 ¹ H NMR spectrum of Ir1	S7
Fig. S6 ¹ H NMR spectrum of Ir2	S8
Fig. S7 ¹ H NMR spectrum of Ir3	
Fig. S8 ¹ H NMR spectrum of Ir4	S10
Fig. S9 ¹⁹ F NMR spectrum of Ir1	S11
Fig. S10 ¹⁹ F NMR spectrum of Ir2	S12
Fig. S11 ¹⁹ F NMR spectrum of Ir3	S13
Fig. S12 ¹⁹ F NMR spectrum of Ir4	S14
Fig. S13 Photostability in buffer of Ir1-Ir4	S15
Fig. S14 Real-time uptake monitoring of Ir1-Ir4	S16
Fig. S15 Colocalization imaging of LTR and Ir1-Ir4	S17
Fig. S16 Colocalization imaging of ERTR and Ir1-Ir4	S18
Fig. S17 Distribution analysis of Ir1-Ir4 in HeLa cells by ICP-MS	S19
Fig. S18 Lipophilicity of Ir1-Ir4	S20
Fig. S19 Cellular uptake mechanisms of Ir1-Ir4	S21
Fig. S20 Photobleaching in HeLa cells	S22
Fig. S21 Real-time imaging of HeLa cells stained with Ir2	S23
Fig. S22 Real-time imaging of HeLa cells stained with Ir3	S24
Fig. S23 Real-time imaging of HeLa cells stained with Ir4	S25
Table S1 Photophysical data for the complexes at 298 K	S26

Scheme S1. Synthetic route to Ir1-Ir4.

BG Mode:Calc 13.183<->-13.400(792<->805) Mass Peaks:631 Base Peak:708.85(5861333) Polarity:Pos Segment1 - Event1

Fig. S1 ES-MS spectrum of complex Ir1.

BG Mode:Cale 7.317<->7.817(440<->470) Mass Peaks:682 Base Peak:726.85(10273297) Polarity:Pos Segment1 - Event1

Fig. S2 ES-MS spectrum of complex Ir2.

BG Mode:Calc 10.150<->10.817(610<->650) Mass Peaks:681 Base Peak:744.95(10659146) Polarity:Pos Segment1 - Event1

Fig. S3 ES-MS spectrum of complex Ir3.

Fig. S4 ES-MS spectrum of complex Ir4.

Fig. S5 ¹H NMR spectrum of complex Ir1 in d_6 -DMSO.

Fig. S6 ¹H NMR spectrum of complex Ir2 in d_6 -DMSO.

Fig. S7 ¹H NMR spectrum of complex **Ir3** in d_6 -DMSO.

Fig. S8 ¹H NMR spectrum of complex Ir4 in d_6 -DMSO.

Fig. S9 ¹⁹F NMR spectrum of complex Ir1 in d_6 -DMSO.

Fig. S10 ¹⁹F NMR spectrum of complex **Ir2** in d_6 -DMSO.

Fig. S11 ¹⁹F NMR spectrum of complex **Ir3** in d_6 -DMSO.

Fig. S12 ¹⁹F NMR spectrum of complex Ir4 in d_6 -DMSO.

Fig. S13 Stability of the phosphorescence intensity of **Ir1-Ir4** in PBS under irradiation at 405 nm of 21.2 mW/cm².

Fig. S14 Real-time uptake monitoring of the complexes (10 μ M) in HeLa cells at incubation times of 0-60 min. The complexes were excited at 405 nm. The phosphorescence was collected at 550 ± 20 nm. Scale: 20 μ m.

Fig. S15 Confocal images of HeLa cells co-labeled with the complexes (10 μ M, 1 h) and the commercial lysosomal imaging agent LTR (50 nM, 0.5 h). The complexes were excited at 405 nm. LTR was excited at 543 nm. The phosphorescence/fluorescence was collected at 550 ± 20 nm and 620 ± 20 nm for the complexes and LTR, respectively. BF: bright field. The 5th column was the Pearson's correlation coefficient. Scale bar: 20 μ m.

Fig. S16 Confocal images of HeLa cells co-labeled with the complexes (10 μ M, 1 h) and the commercial ER imaging agent ERTR (1 μ M, 0.5 h). The complexes were excited at 405 nm. ERTR was excited at 543 nm. The phosphorescence/fluorescence was collected at 550 ± 20 nm and 620 ± 20 nm for the complexes and ERTR, respectively. BF: bright field. The 5th column was the Pearson correlation coefficient. Scale bar: 20 μ m.

Fig. S17 Distribution analysis of Ir1-Ir4 in HeLa cells by ICP-MS.

Fig. S18 The log P of Ir1-Ir4 (10 μ M).

Fig. S19 Confocal images of living HeLa cells incubated with 10 μ M **Ir1-Ir4** ($\lambda_{ex} = 405$ nm, $\lambda_{em} = 550 \pm 20$ nm) under different conditions. (a) The cells were incubated with 10 μ M **Ir1-Ir4** at 37 °C for 1 h. (b) The cells were incubated with 10 μ M **Ir1-Ir4** at 4 °C for 1 h. (c) The cells were pretreated with 50 mM 2-deoxy-D-glucose and 5 μ M oligomycin in PBS for 1 h at 37 °C and then incubated with 10 μ M **Ir1-Ir4** at 37 °C for 1 h. (d and e) The cells were pretreated with endocytic inhibitors NH₄Cl (50 mM), and chloroquine (50 μ M) respectively, and then incubated with 10 μ M **Ir1-Ir4** at 37 °C for 1 h. Scale bar: 20 μ M.

Fig. S20 Confocal images of **Ir1-Ir4** (10 μ M, $\lambda_{ex} = 405$ nm, $\lambda_{em} = 550 \pm 20$ nm) and MTR (50 nM, $\lambda_{ex} = 543$ nm, $\lambda_{em} = 620 \pm 20$ nm) before and after photobleaching in HeLa cells. Scale bar: 20 μ m.

Fig. S21 Real-time imaging of HeLa cells stained with **Ir2** (10 μ M) for 1 h at 37 °C, followed by treatment with 30 μ M CCCP, with increasing scan time. Phosphorescence images of **Ir2** (upper panels), Brightfield images (lower panels). The complex was excited at 405 nm. The phosphorescence was collected at 550 ± 20 nm. Scale: 20 μ m.

Fig. S22 Real-time imaging of HeLa cells stained with **Ir3** (10 μ M) for 1 h at 37 °C, followed by treatment with 30 μ M CCCP, with increasing scan time. Phosphorescence images of **Ir3** (upper panels), Brightfield images (lower panels). The complex was excited at 405 nm. The phosphorescence was collected at 550 ± 20 nm. Scale: 20 μ m.

Fig. S23 Real-time imaging of HeLa cells stained with **Ir4** (10 μ M) for 1 h at 37 °C, followed by treatment with 30 μ M CCCP, with increasing scan time. Phosphorescence images of **Ir4** (upper panel), Brightfield images (lower panels). The complex was excited at 405 nm. The phosphorescence was collected at 550 ± 20 nm. Scale: 20 μ m.

Table S1 Photophysical data for the complexes at 298 K.

Complexes	λ _{ab} a	ε ^b	λ _{em} c	$oldsymbol{arphi}^{d}$	ť°
lr1	457	4.39	549	14.3	731
lr2	463	7.41	551	12.7	655
lr3	464	6.40	562	9.23	511
lr4	468	7.70	569	5.56	400

^a λ_{ab} maximum values of the absorption spectra (nm). ^b Extinction coefficient in $(1 \times 10^3 \text{ M}^{-1} \text{ cm}^{-1})$. ^c λ_{em} maximum values of the emission spectra (nm). ^d Phosphorescent quantum yield (%). ^e Phosphorescent life time (ns).