Supporting Information

Stable Fe(III) phenoxyimines as selective and robust CO₂/epoxide coupling catalysts

Eszter Fazekas,^a Gary S. Nichol,^a Michael P. Shaver^a and Jennifer A. Garden*^a ^aEaStCHEM School of Chemistry, University of Edinburgh, Edinburgh, EH9 3FJ, UK.

Table of contents

1.	¹ H and ¹³ C NMR spectra of ligands L1-L3	2
2.	HRMS spectra of complexes C1-C3	5
3.	¹ H NMR spectra of crude CO ₂ /epoxide coupling reaction mixtures	6
4.	Kinetic plot of CO_2 /propylene oxide coupling reaction (0.01 mol% catalyst loading)	9
5.	Data for CO ₂ /cyclohexene oxide coupling reactions	9
6.	Comparison with other Fe complexes for CO_2 /epoxide coupling in the literature	12
7.	Lower temperature CO ₂ /propylene oxide coupling experiments	13
8.	Kinetic data for the synthesis of propylene carbonate catalysed by C3.	13
9.	Catalyst decomposition studies via FT-IR spectroscopy	14
10.	X-ray data for Complexes C1 – C3	14
11.	References	16

1. ¹H and ¹³C NMR spectra of ligands L1-L3

Figure S1 ¹H and ¹³C NMR spectra of L1 in CDCl₃ at 20°C.

Figure S2 ¹H and ¹³C NMR spectra of L2 in CDCl₃ at 20°C.

2. HRMS spectra of complexes C1-C3

Figure S4 HRMS peak of C1.

Figure S5 HRMS peak of C2.

Figure S6 HRMS peak of C3.

3. ¹H NMR spectra of crude CO₂/epoxide coupling reaction mixtures

Figure S7 Typical ¹H NMR spectrum of a CO_2 /propylene oxide coupling crude reaction mixture in CDCl₃ at 20°C. Conversion was determined *via* integration of the CH₃ propylene carbonate (product) peak at 1.37 ppm against the CH₃ propylene oxide (starting material) peak at 1.20 ppm.

Figure S8 Typical ¹H NMR spectrum of a $CO_2/cyclohexene$ oxide coupling crude reaction mixture in $CDCl_3$ at 20°C. Conversion was determined *via* integration of the $OCHCH_2CH_2$ cyclohexene carbonate (product) peak at 4.66 ppm against the $OCHCH_2CH_2$ cyclohexene oxide (starting material) peak at 3.09 ppm.¹

Figure S9 Typical ¹H NMR spectrum of a $CO_2/1,2$ -epoxybutane coupling crude reaction mixture in $CDCI_3$ at 20°C. Conversion was determined *via* integration of the OCH butylene carbonate (product) peak at 4.63 ppm against the OCHCH₂CH₂ 1,2-epoxybutane (starting material) peak at 2.83 ppm.

Figure S10 Typical ¹H NMR spectrum of a $CO_2/1,2$ -epoxy-3-phenoxypropane coupling crude reaction mixture in $CDCl_3$ at 20°C. Conversion was determined *via* integration of the OCH carbonate (product) peak at 4.25 ppm against the OCHC 1,2-epoxy-3-phenoxypropane (starting material) peak at 3.39 ppm.

Figure S11 Typical ¹H NMR spectrum of a CO_2 /epichlorohydrin coupling crude reaction mixture in CDCl₃ at 20°C. Conversion was determined *via* integration of the OCH carbonate (product) peak at 4.98 ppm against the OCH epichlorohydrin (starting material) peak at 3.21 ppm.²

4. Kinetic plot of CO₂/propylene oxide coupling reaction (0.01 mol% catalyst loading)

Figure S12 Kinetic plot for the synthesis of propylene carbonate using **C3** with 10000 equivalents of substrate. Conditions: 100 ml stainless steel autoclaves, 20 bar CO_2 pressure, 120°C, neat. Conversion was determined using ¹H NMR spectra of crude reaction mixtures.

5. Data for CO₂/cyclohexene oxide coupling reactions

C3

C3

Table S1 Synthesis of cyclohexene carbonate from CO_2 and cyclohexene oxide catalysed by complex C3.

Conditions:	100 ml	stainless	steel	autoclaves,	20 ba	· CO ₂	pressure,	120°C,	neat.	Conversion	was
determined	l using ¹ H	l NMR spe	ectra c	of crude reac	tion mi	xture	s.				

TBABr

TBABr

TOF

(h⁻¹)

Figure S13 IR spectrum of a crude $CO_2/cyclohexene$ oxide coupling reaction mixture. The absence of peaks in the 1014 cm⁻¹, 1239-1176 cm⁻¹, and 1731-1787 cm⁻¹ bands indicates no polymer formation.³

Figure S14 EI mass spectrum of a crude CO₂/cyclohexene oxide coupling reaction mixture. The absence of peaks above 550 m/z value indicates no polymer formation.

Figure S15 MALDI spectrum of a crude CO_2 /cyclohexene oxide coupling reaction mixture. The absence of peaks above 538 m/z value indicates no polymer formation.

6. Comparison with other Fe complexes for CO₂/epoxide coupling in the literature

Table S2 Selected literature data for the synthesis of propylene carbonate and cyclohexene carbonate.

Entry	Fe/co-cat/PO	T (°C)	p (bar)	t (h)	\ Conv. (%)	TON	TOF (h ⁻¹)
1 ª	1/2/2000	120	20	1	44	880	880
2 ⁴	1/5/1000	35	1	1	10	100	100
3⁵	1/10/10000	120	20	1	52	5200	5200
4 ⁶	1/4/4000	100	20	6	27	1080	180
5 ⁷	1/1/100	100	15	1	100	100	100
6 ⁸	1/4/4000	100	20	6	87	3160	580
7 9	1/5/100	25	10	18	88	88	5
8 ¹⁰	1/10/200	25	2	18	74	148	8
9 ¹¹	1/0/200	80	35	20	69	690	34.5
10 ¹¹	1/0/200	80	35	20	92	184	9
11 ¹²	1/1/1000	100	40	2	91	910	455
	°) + CO ₂	2	[Fe]/L			

Entry	Fe/co-cat/CHO	Т (°С)	p (bar)	t (h)	Conv. (%)	TON	TOF (h ⁻¹)
12 ¹	1/0/10000	80	10	24	25	2570	107
13 ¹³	1/10/200	85	80	3	94	188	62

^aConditions: 100 ml stainless steel autoclaves, 20 bar CO₂ pressure, 120°C, neat. Conversion was determined using ¹H NMR spectra of crude reaction mixtures.

7. Lower temperature CO₂/propylene oxide coupling experiments

 Table S3 Synthesis of propylene carbonate catalysed by complex C3 at 100°C.

		O.	> +	CO ₂ .	[Fe	e]/L ►			
Entry	Fe/co- cat/PO	co-cat	т (°С)	p (bar)	t (h)	Conv. (%)	TON	TOF (h⁻¹)	TOF/[Fe] (h ⁻¹)
18	1/4/4000	TBABr	100	20	6	87	3480	580	290
2	1/4/4000	TBAI	100	20	6	34	1360	227	227
3	1/4/4000	TBABr	100	20	6	47	1880	313	313

Conditions: 100 ml stainless steel autoclaves, 20 bar CO_2 pressure, 100°C, neat. Conversion was determined using ¹H NMR spectra of crude reaction mixtures.

8. Kinetic data for the synthesis of propylene carbonate catalysed by C3.

Table S4 Synthesis of propylene carbonate catalysed by complex **C3** with 2000 and 10000 equivalents of substrate.

	0.	[F	e]/2 TBABr		
	Ţ>	+ 002	120°C		
Entry	t (h)	[PO]/[Fe]	Conv. (%)	TON	TOF (h ⁻¹)
1	1	2000	44	880	880
2	2	2000	51	1020	510
3	3	2000	64	1280	427
4	4.5	2000	74	1480	329
5	6	2000	85	1700	283
6	2	10000	11	1100	550
7	4	10000	20	2000	500
8	8	10000	41	4100	513
9	16	10000	53	5300	331
10	20	10000	55	5500	275
11	26	10000	63	6300	242

Conditions: 100 ml stainless steel autoclaves, 20 bar CO_2 pressure, 120°C, neat. Conversion was determined using ¹H NMR spectra of crude reaction mixtures.

9. Catalyst decomposition studies via FT-IR spectroscopy

Figure S16 FT-IR spectrum of C3 catalyst complex.

Figure S17 FT-IR spectrum of **C3** after stirring in water for 1 hour at ambient temperature, with subsequent removal of the water under vacuum. No new -OH resonance was observed, and the resonances from **C3** remain consistent between the two spectra.

10. X-ray data for Complexes C1 – C3

C1

 $C_{16}H_{16}CIFeN_2O_2$, M = 359.61, T = 120 K, monoclinic, space group I2/a, a = 12.5989(3), b = 7.39494(17), c = 17.7897(5) Å, $\beta = 108.536(3)^\circ$, V = 1571.44(7) Å³, Z = 4, 19409 measured reflections, 2808 ($R_{int} = 0.0288$) unique, final $R_1 = 0.0298$ (all data).

The average of the equatorial angles [Cl1-Fe1-O1, 119.50°; Cl1-Fe1-O1', 119.50°; O1-Fe1-O1', 121.00° is 120.00°, which corresponds to 100% equatorial trigonal bipyramidal character (TBP_e).¹⁴ Defined by apical-to-equatorial bonds [N1-Fe1-O1, 90.28°; N1-Fe1-O1', 88.46°; N1-Fe1-Cl1, 91.28°], the axial trigonal bipyramidal character (TBP_a) is also high at 99.97%.

C2

 $C_{55}H_{72}Cl_2Fe_2N_4O_4$, M = 1035.80, T = 120 K, monoclinic, space group P2₁/*c*, *a* = 10.8856(3), *b* = 24.3385(7), *c* = 19.8618(7) Å, β = 91.003(3)°, *V* = 5261.3(3) Å³, *Z* = 4, 12233 measured reflections, 10913 [R_{int} = 0.1307] unique reflections, final R_1 = 0.1281 (all data).

The average of the equatorial angles [Cl1-Fe1-O1, 116.07°; Cl1-Fe1-O2, 119.34°; O1-Fe1-O1', 124.60° is 120.00°, which corresponds to 100% equatorial trigonal bipyramidal character (TBP_e).¹⁴ Defined by apical-to-equatorial bonds [N1-Fe1-O1, 87.50°; N1-Fe1-O2, 87.60°; N1-Fe1-Cl1, 93.55°], the axial trigonal bipyramidal character (TBP_a) is also high at 97.69%.

С3

 $C_{16}H_{14}Cl_3FeN_2O_2$, M = 428.49, T = 120 K, monoclinic, space group C2/c, a = 23.1547(3), b = 12.00241(14), c = 12.99462(16) Å, $\beta = 102.4166(12)^\circ$, V = 3526.89(7) Å³, Z = 8, 27812 measured reflections, 3677 [R_{int} = 0.0700] unique, final $R_1 = 0.0431$ (all data).

The average of the equatorial angles [Cl1-Fe1-O1, 117.12°; Cl1-Fe1-O2, 121.11°; O1-Fe1-O2, 121.78° is 120.00°, which corresponds to 99.97% equatorial trigonal bipyramidal character (TBP_e).¹⁴ Defined by apical-to-equatorial bonds [N1-Fe1-O2, 89.00°; N1-Fe1-O1, 88.64°; N1-Fe1-Cl1, 92.25°], the axial trigonal bipyramidal character (TBP_a) is also high at 99.79%.

Table S2 Crystallographic data and refinement details for C1, C2 and C3 (CCDC reference numbers 1855808-1855810).

Identification code	C1	C2	С3
Empirical formula	$C_{16}H_{16}CIFeN_2O_2$	$C_{55}H_{72}CI_2Fe_2N_4O_4$	$C_{16}H_{14}Cl_3FeN_2O_2$
Formula weight	359.61	1035.80	428.49
Temperature/K	120.00	120.00	120.00
Crystal system	monoclinic	monoclinic	monoclinic
Space group	I2/a	P2 ₁ /c	C2/c
a/Å	12.5989(3)	10.8856(3)	23.1547(3)
b/Å	7.39494(17)	24.3385(7)	12.00241(14)
c/Å	17.7897(5)	19.8618(7)	12.99462(16)
α/°	90	90	90
β/°	108.536(3)	91.003(3)	102.4166(12)
γ/°	90	90	90
Volume/ų	1571.44(7)	5261.3(3)	3526.89(7)
Z	4	4	8
$\rho_{calc}g/cm^3$	1.520	1.3075	1.614
µ/mm ⁻¹	1.137	5.730	11.142
F(000)	740.0	2191.2	1736.0
Crystal size/mm ³	$0.377 \times 0.295 \times 0.217$	$0.458 \times 0.170 \times 0.017$	0.092 × 0.075 × 0.05
Radiation	ΜοΚα (λ = 0.71073)	Cu Kα (λ = 1.54184)	CuKα (λ = 1.54184)
20 range for data collection/°	6.016 to 65.776	7.26 to 152.04	7.82 to 152.05
Reflections collected	19409	12233	27812
Independent reflections	2808 [R _{int} = 0.0288, R _{sigma} = 0.0191]	10913 [R _{int} = 0.1307, R _{sigma} = 0.1073]	3677 [R _{int} = 0.0700, R _{sigma} = 0.0331]
Data/restraints/parameters	2808/0/102	10913/0/622	3677/0/219
Goodness-of-fit on F ²	1.097	1.057	1.032
Final R indexes [I>=2σ (I)]	R ₁ = 0.0271, wR ₂ = 0.0676	$R_1 = 0.0969$, $wR_2 = 0.2437$	R ₁ = 0.0406, wR ₂ = 0.1070
Final R indexes [all data]	R ₁ = 0.0298, wR ₂ = 0.0690	$R_1 = 0.1281$, $wR_2 = 0.2660$	R ₁ = 0.0431, wR ₂ = 0.1093
Largest diff. peak/hole / e Å ⁻³	0.49/-0.22	1.29/-1.18	0.40/-0.58

11. References

- 1. Buchard, A.; Kember, M. R.; Sandeman, K. G.; Williams, C. K., Chem. Comm. 2011, 47 (1), 212-214.
- Wu, G.-P.; Wei, S.-H.; Ren, W.-M.; Lu, X.-B.; Xu, T.-Q.; Darensbourg, D. J., J. Am. Chem. Soc. 2011, 133 (38), 15191-15199.
- 3. Garden, J. A.; Saini, P. K.; Williams, C. K., J. Am. Chem. Soc. 2015, 137 (48), 15078-15081.
- 4. Della Monica, F.; Maity, B.; Pehl, T.; Buonerba, A.; De Nisi, A.; Monari, M.; Grassi, A.; Rieger, B.; Cavallo, L.; Capacchione, C., ACS Catalysis **2018**, *8* (8), 6882-6893.
- 5. Della Monica, F.; Vummaleti, S. V. C.; Buonerba, A.; Nisi, A. D.; Monari, M.; Milione, S.; Grassi, A.; Cavallo, L.; Capacchione, C., *Adv. Synth. Cat.* **2016**, *358* (20), 3231-3243.
- Alhashmialameer, D.; Collins, J.; Hattenhauer, K.; Kerton, F. M., Cat. Sci. Technol. 2016, 6 (14), 5364-5373.
- 7. Dengler, J. E.; Lehenmeier, M. W.; Klaus, S.; Anderson, C. E.; Herdtweck, E.; Rieger, B., *Eur. J. Inorg. Chem.* **2011**, *2011* (3), 336-343.
- Buonerba, A.; De Nisi, A.; Grassi, A.; Milione, S.; Capacchione, C.; Vagin, S.; Rieger, B., *Cat. Sci. Tech.* 2015, 5 (1), 118-123.
- Whiteoak, C. J.; Gjoka, B.; Martin, E.; Belmonte, M. M.; Escudero-Adán, E. C.; Zonta, C.; Licini, G.; Kleij, A. W., *Inorg. Chem.* 2012, *51* (20), 10639-10649.
- 10.Whiteoak, C. J.; Martin, E.; Belmonte, M. M.; Benet-Buchholz, J.; Kleij, A. W., *Adv. Synth. Catal.* **2012**, *354* (2-3), 469-476.
- 11.Fuchs, M. A.; Zevaco, T. A.; Ember, E.; Walter, O.; Held, I.; Dinjus, E.; Doring, M., *Dalton Trans.* **2013**, *42* (15), 5322-5329.
- 12.Sheng, X.; Qiao, L.; Qin, Y.; Wang, X.; Wang, F., Polyhedron 2014, 74, 129-133.
- 13.Whiteoak, C. J.; Martin, E.; Escudero-Adán, E.; Kleij, A. W., *Adv. Synth. Catal.* **2013**, *355* (11-12), 2233-2239.
- 14. Tamao, K.; Hayashi, T.; Ito, Y.; Shiro, M., Organometallics 1992, 11 (6), 2099-2114.