Electronic Supplementary Information

Luminescent Dicyanidonitridotechnetium(V) Core with a Tridentate Ligand Coordination Sites

Takashi Yoshimura,^{*a,b} Kojiro Nagata,^a Tatsuki Shiroyama,^c Yasushi Kino,^d Tsutomu Takayama,^e Tsutomu Sekine^f and Atsushi Shinohara^{b,c}

^aRadioisotope Research Center, Institute for Radiation Sciences, Osaka University, Suita, Osaka 565-0871, Japan,
 ^bProject Research Center for Fundamental Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan, ^cDepartment of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan, ^dDepartment of Chemistry, Graduate School of Science, Tohoku University, Sendai, Miyagi 980-8576, Japan,
 ^eDepartment of Chemistry, Daido University, Nagoya, Aichi 457-8530, Japan, ^fInstitute for Excellence in Higher Education, Tohoku University, Sendai, Miyagi 980-8576, Japan.

Experimental Section

Materials. All commercially available reagents were used as received. The isotope ⁹⁹Tc was used to synthesize all of the Tc complexes reported in this paper. *Caution:* ⁹⁹Tc is a low-energy β^- emitter (E_{max} = 290 keV) with a half-life of 2.11 × 10⁵ y. *n*-(C₄H₉)₄N[TcNCl₄] was prepared according to literature procedures.¹

Synthesis of the Complexes.

[TcNCl₂bpa] (1). $(n-C_4H_9)_4N[^{99}TcNCl_4]$ (6.1 mg, 1.2×10^{-2} mmol) was dissolved in 0.5 mL of CH₃CN, and 0.65 µL of CH₃CN solution containing bpa (7.2 mg, 3.6×10^{-2} mmol) was added to the solution. The mixture was sonicated for several minutes, and then the solution was left for several hours. The brown crystals deposited were collected by filtration. Yield: 4.4 mg (89%). UV-vis/cm⁻¹ (ε /M⁻¹cm⁻¹) in CH₃CN: 21200 (800), 26600 (5300), 39400 (8000).

[TcN(CN)₂**bpa] (2).** The complex **1** (2.0 mg, 4.9 x 10⁻³ mmol) was dissolved in 20 mL of CH₃CN, and 3.5 mL of an aqueous solution containing KCN (0.65 mg, 1.0 x 10⁻² mmol) was added to the solution. The mixture was sonicated for 5 min and left for several hours. The solution was evaporated to dryness, and then the residue was dissolved in 10 mL of CH₃CN. Toluene was layered on the solution, and the solution was left for several days. The yellow crystals deposited were collected by filtration. Yield: 0.89 mg (44%). UV-vis/cm⁻¹ (ε /M⁻¹cm⁻¹) in CH₃CN: 22800 (320), 30200 (4600), 37200 (2800), 39800 (9300).

X-ray Crystallography. Single crystal X-ray data were collected at -103 °C on a Rigaku RAXIS diffractometer with graphite-monochromated Mo K_{α} radiation. Cell parameters were retrieved using CrystalClear Software. Diffraction data were collected and processed using CrystalClear. Crystal structures were solved by SHELXT version 2014.² Atomic coordinates and thermal parameters of non-hydrogen atoms were calculated by a full-matrix least-squares method

(SHELXL version 2017).³ Calculations were performed using Crystal Structure 4.2.4.⁴ A large residual electron density for **2** results from the limited data quality.

Physical Measurements. UV-vis spectra were measured by a JASCO V-550 spectrophotometer. IR spectra were recorded in KBr pellets on a JASCO FTIR-6100 spectrometer. For measurement of emission spectrum, a solid sample was placed between two nonfluorescent glass plates. The corrected emission spectrum was recorded on a multichannel photodetector (Hamamatsu Photonics, PMA-11) at 365 nm (±5 nm) excitation by using a 100 W mercury-xenon lamp (HOYA-SCHOTT HLS 100UM) and an optical band-pass filter (Asahi Spectra).

DFT Calculations. DFT calculations were performed with the Amsterdam Density Functional package (ADF 2017.103).^{5,6} For geometry optimizations and calculation of frequencies, the initial geometries of [TcNCl₂(bpa)] and [TcN(CN)₂(bpa)] were taken from the X-ray structures. Structural optimizations were carried out at the GGA level using PBE, the scalar relativistic ZORA, and the DZ for all atoms with a small frozen core approximation as provided in the ADF basis set library.⁷ Calculation of all positive IR frequencies confirmed the existence of the potential minimum. The atomic coordinates of the optimized geometries are listed in Tables S2 – S4. The single point and time dependent DFT calculations of **1** and **2** were performed using the optimized geometries at B3LYP, the scalar relativistic ZORA, and the TZ2P as provided in the ADF basis set library. The calculations for **1** and **2** used the COSMO solvent model for CH₃CN.⁸ In the case of **2***, the single point energy calculations was performed using the GGA level using PBE, the scalar relativistic ZORA, and the DZ for all atoms with a small frozen core approximation as provided in the ADF basis set library.

References

- 1 J. Baldas, J. F. Boas, J. Bonnyman and G. A. Williams, J. Chem. Soc., Dalton Trans., 1984, 2395-2400.
- 2 G. M. Sheldrick, Acta Cryst. A, 2015, A71, 3-8.
- 3 G. M. Sheldrick, Acta Cryst. C, 2015, C71, 3-8.
- 4 Rigaku Corporation, Tokyo, Japan.
- G. te Velde, F. M. Bickelhaupt, E. J. Baerends, C. Fonseca Guerra, S. J. A. van Gisbergen, J. G. Snijders, and T. Ziegler, J. Comput. Chem. 2001, 22, 931-967.
- 6 ADF2017, S., Theoretical Chemistry; Vrije Universiteit:; Amsterdam, T. N., http://www.scm.com/.
- 7 E. van Lenthe, A. Ehlers, E.-J. Baerends, J. Chem. Phys. 1999, **110**, 8943-8953.
- 8 C. C. Pye, T. Ziegler, *Theo. Chem. Acc.* 1999, **101**, 396-408.

	1	2
Formula	$C_{14}H_{16}CI_2N_5Tc$	C _{17.5} H ₁₇ N ₆ Tc
F.W.	424.13	410.28
Space group	P21/c	P 1
a/Å	10.2820(3)	7.3182(3)
b/Å	11.9687(3)	10.7602(4)
c/Å	14.2478(5)	12.5043(5)
α∕deg		66.5421(17)
β/deg	103.6947(8)	87.0938(14)
γ/deg		72.793(2)
V∕/ų	1703.52(9)	860.32(6)
Ζ	4	2
<i>Т/</i> К	170.0	170.0
$ ho_{calc}/gcm^{-3}$	1.646	1.576
µ/mm⁻¹	1.153	0.840
R1	0.0469	0.0795
wR2	0.0958	0.2022
GOF	1.164	1.209

Table S1. Crystallographic data of [TcNCl2(bpa)] (1) and [TcN(CN)2(bpa)] (2)

	x/Å	y/Å	z/Å
Tc1	1.48575857	2.28461741	1.26347497
Cl1	-0.90084901	2.20389450	1.20151557
Cl2	1.52215185	-0.03237840	1.83812249
N1	1.42166253	4.01704463	0.00878243
N2	1.89602734	3.11785124	2.62947182
N3	3.49095431	2.10526204	0.54630770
N4	1.29743724	1.44519778	-1.00120630
C1	4.53898505	2.63979204	1.22539462
C2	5.82135300	2.68834793	0.70724388
С3	6.06663787	2.17540330	-0.56626227
C4	5.00008400	1.61484231	-1.26064154
C5	3.73411351	1.57481580	-0.68468718
C6	2.59067541	0.86260632	-1.35695450
С7	1.69933060	5.25599551	0.49166682
C8	1.82738427	6.36667304	-0.32400808
С9	1.67685404	6.22633445	-1.70338493
C10	1.37986265	4.96269641	-2.20212002
C11	1.23968471	3.88388033	-1.33463055
C12	0.78548953	2.53597849	-1.82947795
H1	4.30248193	3.03605040	2.21217823
H2	6.61853952	3.13025823	1.30599848
Н3	7.06446284	2.20835118	-1.00564714
H4	5.14174224	1.18875223	-2.25538358
H5	2.58573611	-0.17273455	-0.97393407
Н6	2.75616373	0.82730024	-2.44999894
Н7	1.81956660	5.32006607	1.57248006
Н8	2.04930171	7.33410510	0.12794655
Н9	1.78471235	7.08114633	-2.37234188
H10	1.23914062	4.80180072	-3.27236691
H11	1.04390320	2.41722988	-2.89827992
H12	-0.31407003	2.51399678	-1.73520745
H13	0.58734334	0.71609813	-0.87086382

 Table S2. Atomic Coordinates of Optimized Geometry for 1

	x/Å	y/Å	z/Å
Tc1	-0.84162330	0.84565462	0.08381351
N1	-2.03681542	0.09163148	0.94362684
N2	-1.66473413	3.94141337	-0.27725513
N3	-1.40172099	0.27539680	-3.03998288
N4	0.62371452	-0.76094671	-0.00066881
N5	0.43685670	1.55755684	1.69078158
N6	1.14118064	1.78053070	-0.98749217
C1	-1.51394077	2.78362621	-0.14653223
C2	-1.33769699	0.47029502	-1.88340061
С3	0.43832795	-1.91604769	0.68387438
C4	1.42766913	-2.87697944	0.81023206
C5	2.67128982	-2.65510856	0.22153586
C6	2.86040552	-1.47983179	-0.49624106
С7	1.82230617	-0.55834007	-0.60671612
C8	1.94284238	0.65889876	-1.48458729
С9	0.18090629	1.24500161	2.98440625
C10	1.06032195	1.54198626	4.01236552
C11	2.26466135	2.17769913	3.71495910
C12	2.52447619	2.51277957	2.39112260
C13	1.59320802	2.20839711	1.40143816
C14	1.77442130	2.67898227	-0.01813076
H1	-0.54534377	-2.04369155	1.13502177
H2	1.21763283	-3.78829952	1.37187118
Н3	3.47593736	-3.38618401	0.31570579
H4	3.81201829	-1.27068305	-0.98803885
H5	3.00728367	0.92582392	-1.62126228
H6	1.52648940	0.38440022	-2.47045913
H7	-0.76839917	0.74312451	3.16942238
H8	0.79720062	1.27006556	5.03556268
Н9	2.98400373	2.41290780	4.50097736
H10	3.44632676	3.02708465	2.11413072
H11	1.25203017	3.64962117	-0.09850885
H12	2.84690668	2.84576972	-0.23034035
H13	0.75995218	2.31908385	-1.77462013

Table S3. Atomic Coordinates of Optimized Geometry for 2

	x/Å	y/Å	z/Å
Tc1	-0.94375128	0.95713343	-0.04361590
N1	-1.91626419	0.03527485	0.97641188
N2	-1.79154466	4.06250083	0.08429151
N3	-1.50004252	0.21964623	-3.13200854
N4	0.62320781	-0.88754753	-0.09204960
N5	0.54079025	1.36728232	1.63558051
N6	1.13486960	1.71302112	-1.03661170
C1	-1.53894373	2.91305119	0.02779449
C2	-1.38959730	0.47018684	-1.98691905
С3	0.47730131	-1.93226550	0.73936734
C4	1.54560911	-2.73254354	1.12448845
C5	2.82083287	-2.42414467	0.65079972
C6	2.97324216	-1.33441762	-0.20563910
С7	1.85240949	-0.59398115	-0.56840262
C8	1.91445250	0.56021069	-1.53308360
С9	0.29489540	1.00961014	2.91458347
C10	1.15464032	1.33079855	3.95249960
C11	2.32079957	2.04194780	3.66776729
C12	2.57236709	2.41134611	2.34806301
C13	1.66014991	2.07165679	1.35443668
C14	1.81854457	2.56874910	-0.06092574
H1	-0.54191346	-2.10519575	1.09591167
H2	1.37728336	-3.58378795	1.78602154
Н3	3.68583004	-3.01898316	0.94882388
H4	3.95470276	-1.06448860	-0.59968747
Н5	2.96551241	0.83191265	-1.74098913
H6	1.44109663	0.24366210	-2.47857723
H7	-0.63074800	0.45143667	3.07211680
H8	0.91251148	1.01954856	4.96965932
Н9	3.02073357	2.30865373	4.46124871
H10	3.47058319	2.97269275	2.08477112
H11	1.33220028	3.56065644	-0.10468056
H12	2.89136576	2.70129953	-0.29603964
H13	0.82888530	2.28119352	-1.83693560

 Table S4. Atomic Coordinates of Optimized Geometry for 2*

	1		2		2*
	Observed	Calcd	Observed	Calcd	Calcd
Tc≡N	1.646(3)	1.652	1.645(7)	1.654	1.684
Tc-X	2.3990(9),	2.388, 2.389	2.070(7),	2.063, 2.064	2.046, 2.052
	2.4032(9)		2.093(7)		
Tc–N(eq)	2.135(3),	2.137,	2.166(5),	2.173, 2.176	2.279, 2.421
	2.138(3)	2.140,	2.196(5)		
Tc–N(ax)	2.382(3)	2.4226	2.378(5)	2.440	2.424
N≡Tc−N(eq)	94.96(13)	94.8, 95.0	95.9(3),	99.8, 101.0	88.2, 91.6
			98.2(3)		
N≡Tc−N(ax)	165.70(12)	165.3	164.5(3)	171.9	156.0
N≡Tc−X	102.16(11),	106.7	98.7(3),	103.8, 104.5	108.6, 109.5
	103.65(11)		99.6(3)		
X-Tc-X	89.05(3)	89.4	87.2(2)	89.2	101.3
X–Tc–N(eq)	89.18(8),	89.0, 89.1	87.8(2),	88.1, 89.5	86.6, 89.5
	90.52(8)		89.8(2)		
X–Tc–N(eq)	161.26(8),	157.8, 158.0	162.9(2),	155.0, 155.3	151.9, 156.6
	162.48(8)		164.5(3)		
X–Tc–N(ax)	86.60(7),	83.5,	90.3(2),	81.2, 81.7	82.7, 88.0
	87.77(7)	83.7	93.4(2)		
N(eq)–Tc–N(eq)	85.62(11)	84.2	90.67(19)	82.8	74.4
N(eq)–Tc–N(ax)	74.69(11),	74.3, 74.3	71.4(2),	73.7, 73.8	71.0, 71.8
	74.72(10)		73.67(19)		

 Table S5.
 Selected Observed and Calculated Bond Distances (Å) and Angles (deg) of 1, 2, and 2*

 $X = CI \text{ for } \mathbf{1} \text{ and } X = C \text{ for } \mathbf{2}.$

wavenumber/cm ⁻¹		
Observed	Calcd	Assignment
2924	2923	<i>v</i> C-H(methylene)
1608	1587	v phenyl
1482	1456	ν phenyl
1433	1417	v phenyl
	1411	δ methylene
1287	1266, 1260	δ phenyl
1159	1147	δ phenyl
1102	1114	<i>v</i> C-N
1058	1086	vN≡Tc
772	765	γphenyl

Table S6. Selected Observed and Calculated IR Frequencies of 1

Table S7. Selected Observed and Calculated IR Frequencies of 2

Wavenumber/cm ⁻¹		
Observed	Calcd	Assignment
2922	2923	v C-H(methylene)
2123, 2112	2134, 2127	vC≡N
1608	1590	ν phenyl
1449	1457	ν phenyl
	1418	δ methylene
1294	1264	δ phenyl
1157	1151	δ phenyl
1094	1106	νC-N
1055	1089	v N≡Tc
773	740	γphenyl

Wavenumb	er/cm ⁻¹		
Observed	Calcd	Oscillator	Major component of transition
		Strength	
21200 sh	24096	0.0001	$d_{xy} \to d_{\pi^*}$
			[HOMO → LUMO+2 (71.1%), HOMO → LUMO+1 (28.7%)]
	24849	0.0040	$d_{xy} \to d_{\pi^*}$
			[HOMO → LUMO+3 (93.6%), HOMO → LUMO (6.1%)]
26600	26294	0.0937	$d_{xy} \rightarrow \pi^*(bpa)$
			[HOMO → LUMO (92.7%), HOMO → LUMO+3 (6.1%)]
	27006	0.1131	$d_{xy} \rightarrow \pi^*(bpa)$
			[HOMO → LUMO+1 (70.4%), HOMO → LUMO+2 (28.4%)]
39400	37739	0.0187	$p(N_{amine}), p(CI), p(N_{nitrido}) \rightarrow d_{\pi^*} (63.4\%)$
			$p(N_{amine}), p(Cl), p(N_{nitrido}) \rightarrow \pi^*(bpa) (31.3\%)$
	39421	0.0112	p(Cl) $\rightarrow \pi^*$ (bpa) (46.8%)
			p(N _{amine}), p(Cl), p(N _{nitrido}) $\rightarrow \pi^*$ (bpa) (26.1%)
			π (bpa) \rightarrow π *(bpa) (17.2%)
	40503	0.0151	$p(Cl) \rightarrow d_{\pi^*}$ (77.0%)
	42243	0.0230	$p(Cl) \rightarrow d_{\pi^*}$ (35.2%)
			p(Cl) $\rightarrow \pi^*$ (bpa) (16.8%)
			π (bpa) $\rightarrow \pi^*$ (bpa) (15.2%)
			$p(N_{amine}), p(Cl), p(N_{nitrido}) \rightarrow \pi^*(bpa) (14.1\%)$
	43109	0.0296	p(Cl), p(N _{nitrido}) $\rightarrow \pi^*$ (bpa) (35.8%)
			p(Cl) $\rightarrow \pi^*$ (bpa) (20.2%)
			π (bpa) \rightarrow π *(bpa) (15.4%)
	44146	0.0634	p(Cl), p(N _{nitrido}) $\rightarrow \pi^*$ (bpa) (48.5%)
			π (bpa) $\rightarrow \pi^*$ (bpa) (14.0%)

 $\textbf{Table S8.} \ \textbf{Observed and Calculated Electronic Transition Energies of 1}$

Wavenumb	er/cm ⁻¹		
Observed	Calcd	Oscillator	Major component of transition
		Strength	
22800	26541	0.0063	$d_{xy} \mathrel{\Rightarrow} d_{\pi^*}$
			[HOMO \rightarrow LUMO (51.6%), HOMO \rightarrow LUMO+1 (37.1%),
			HOMO → LUMO+2 (11.0%)]
	26735	0.0059	$d_{xy} \rightarrow d_{\pi^*}$
			[HOMO \rightarrow LUMO+1 (61.6%), HOMO \rightarrow LUMO (24.7%),
			HOMO → LUMO+2 (13.4%)]
30200	30419	0.1003	$d_{xy} o \pi^*$ (bpa), d_{π^*}
			[HOMO → LUMO+2 (74.9%), HOMO → LUMO (23.0%)]
	31870	0.0995	$d_{xy} \rightarrow \pi^*(bpa)$
			[HOMO → LUMO+3 (99.1%)]
37200	36946	0.0199	$p(N_{amine}), p(N_{nitrido}) ightarrow d_{\pi^*} (83.4\%)$
	37193	0.0153	$p(N_{amine}), p(N_{nitrido}) \rightarrow d_{\pi^*}(72.8\%)$
	37245	0.0086	$d_{xy} \rightarrow \pi^*$ (bpa) (74.7%)
			π (bpa) \rightarrow d $_{\pi^*}$ (13.4%)
39800	41992	0.0116	π (bpa) $\rightarrow \pi^*$ (bpa) (46.4%)
			π (bpa) \rightarrow d $_{\pi^*}$ (44.3%)
	43842	0.0521	p(N _{amine}), p(N _{nitrido}) $\rightarrow \pi^*$ (bpa) (36.5%)
			π (bpa) \rightarrow d $_{\pi^*}$ (24.6%)
			π (bpa) $\rightarrow \pi^{*}$ (bpa) (13.1%)
	44413	0.0667	p(N _{amine}), p(N _{nitrido}) $\rightarrow \pi^*$ (bpa) (57.2%)
			π (bpa) \rightarrow d $_{\pi^*}$ (14.4%)

 Table S9.
 Observed and Calculated Electronic Transition Energies of 2

Fig. S1. The axes in the present study (L = Cl or CN).

Fig. S2. Energy diagrams in near HOMO/LUMO levels of [TcNCl₂(bpa)] (1) and [TcN(CN)₂(bpa)] (2).

HOMO (-5.62 eV)

LUMO (-1.79 eV)

LUMO+2 (-1.58 eV)

LUMO+1 (-1.63 eV)

LUMO+3 (-1.49 eV)

Fig. S3. Contour plots of MOs near the frontier orbital levels of [TcNCl₂(bpa)] (1).

HOMO (-6.28 eV)

LUMO (-2.03 eV)

LUMO+1 (-1.94 eV)

LUMO+3 (-1.65 eV)

Fig. S4. Contour plots of MOs near the frontier orbital levels of [TcN(CN)₂(bpa)] (2).

Fig. S5. Observed and calculated UV-vis spectra for **1** in CH₃CN (black: observed and red: calculated spectra).

Fig. S6. Observed and calculated UV-vis spectra for **2** in CH₃CN (black: observed and red: calculated spectra).