Pyrazole appended quinoline-BODIPY based arene ruthenium complexes: their anticancer activity and potential applications in cellular imaging

Rajendra Prasad Paitandi^a, Vinay Sharma^b, Vishwa Deepak Singh^a, Bhupendra Kumar Dwivedi^a, Shaikh M. Mobin^{b,c,d}, and Daya Shankar Pandey^{*a}

^aDepartment of Chemistry, Institute of Science, Banaras Hindu University, Varanasi - 221005 (UP), India.

^bDiscipline of Biosciences and Bio-Medical Engineering, Indian Institute of Technology Indore, Simrol, Indore-453552, India.

^cDiscipline of Chemistry, Indian Institute of Technology Indore, Simrol, Indore-453552, India.

^dMetallurgical Engineering and Material Science, Indian Institute of Technology Indore, Simrol, Indore-453552, India.

Contents

1.	NMR spectra of the L1
2.	NMR spectra of the complexes1–4S3-S6
3.	ESI-MS of the L1 and complexes1–4
4.	UV-Vis spectra of DNA in presence of 1–3
5.	Emission spectra from EB bound DNA with 1, 2 and 3
6.	The plot of [DNA]/($\epsilon_a-\epsilon_f$) vs. [DNA] for 14 from UV-Vis studyS11
7.	Stern-Volmer plot for fluorescence titrations of EB-DNA with 1–4
8.	Fluorescence lifetime spectra of ligands L1–L2 and complexes 1–4
9.	Cyclic voltammogram of ligands L1–L2 and complexes 1–4
10.	• Hydrolysis study of complex 2
11.	UV-Vis titrations spectra of complexes 2 and 4 in dark and light in PBS
12.	• DFT optimized structures and Frontier MOs contour plo1–3
13	• Molecular docking of 1–3 with DNA
14	The spectral changes in DPBF treated with 1–3
15.	• Flow cytometer analysis of DCFDA treated with 1–3 on HeLa cells
16	Fluorescence microscopic images of HeLa cells using LysoTracker Red in the presence of
	complexes 1–3
17.	Fluorescence microscopic images of HeLa cells using MitoTracker Red in the presence of
	complexes 1–3
18	• Tables S1-S5

Fig. S1 1 H (a) and 13 C (b) NMR spectra of L1 in CDCl₃.

Fig. S2 1 H (a) and 13 C (b) NMR spectra of 1 in DMSO-d₆.

Fig. S3 1 H (a) and 13 C (b) NMR spectra of 2 in CDCl₃.

Fig. S4 1 H (a) and 13 C (b) NMR spectra of **3** in CDCl₃.

Fig. S5 1 H (a) and 13 C (b) NMR spectra of 4 in CDCl₃.

Fig. S6 ESI-MS spectra of L1 (a), 1 (b) and 2 (c).

Fig. S7 ESI-MS spectra of 3 (a) and 4 (b).

Fig. S8 UV–Vis spectra of **1–3** in PBS with increasing concentrations of CT-DNA (0–20 μ M) at room temperature. Arrow shows absorbance changes with increasing CT-DNA concentration.

Fig. S9 Emission spectra of DNA–EB system in absence (--- black line) and presence of 1–3 $[EB = 10 \ \mu\text{M}, [DNA] = 100 \ \mu\text{M}, [1–3] = 0–50 \ \mu\text{M}]$. Arrow shows changes in emission intensity upon addition of increasing concentration of the complexes.

Fig. S10 (a) Plot of [DNA]/ $(\epsilon_a - \epsilon_f)$ vs. [DNA] for **1–4** from UV-Vis (b) Stern-Volmer plots of the EB-DNA fluorescence titration for complexes **1–4**.

Fig. S11 Fluorescence lifetime spectra of 1–2 and L1 (a) and 3–4 and L2 (b) in pure acetonitrile.

Fig. S12 Cyclic voltammogram of L1 (a) and L2 (b) in CH₃CN (c, 100 μ M) at room temperature.

Fig. S13 Cyclic voltammogram of 1 (a) and 2 (b) in CH₃CN (c, 100 μ M) at room temperature.

Fig. S14 Cyclic voltammogram of 3 (a) and 4 (b) in CH₃CN (c, 100 μ M) at room temperature.

Fig. S15 Hydrolysis of **2** in 5% DMSO-d₆/95% D₂O (v/v) at 293K over a period of 24 h monitored by ¹H NMR; peaks labelled as (\checkmark) correspond to the aqua complex after hydrolysis.

Fig. S16 UV-Vis spectrum for a 10 μ M solution of complexes 2 and 4 (dark) in PBS (1% DMSO) recorded over 12 h at 298 K.

Fig. S17 UV-Vis spectrum for a 10 μ M solution of complexes 2 and 4 (light) in PBS (1% DMSO) recorded over 2 h at 298 K.

Fig. S18 DFT optimised structures and Frontier MOs contour plots for complexes 1–3.

Fig. S19 Molecular docked model for complex **1** with DNA (PDB ID: 1BNA). Open (left) and closed (right) view of the docked model.

Fig. S20 Molecular docked model for complex **2** with DNA (PDB ID: 1BNA). Open (left) and closed (right) view of the docked model.

Fig. S21 Molecularky docked model for complex **3** with DNA (PDB ID: 1BNA). Open (left) and closed (right) view of the docked model.

Fig. S22 Absorption spectral changes for DPBF and complex 1–3 (5 μ M) upon exposure to visible light (400–700 nm, 10 J cm⁻²) after 5 s interval.

Fig. S23 Flow cytometer analysis of DCFDA in the presence of complex 1–3 upon exposure of visible light on HeLa cells.

Fig. S24 Fluorescence microscopic images of HeLa cells in the presence of complexes **1–3** using LysoTracker Red (Scale bar–40µm).

Fig. S25 Fluorescence microscopic images of HeLa cells in the presence of complexes 1-3 using MitoTracker Red (Scale bar-40 μ m).

Bond	L1	Bond	1	Bond	4
length (Å)		length (Å)		length (Å)	
B1-N1	1.533	Ru1–N3	2.160	Ru1–N3	2.130
B1 –N2	1.549	Ru1–N5	2.040	Ru1–N5	2.064
B1 –F1	1.377	Ru1–Cl1	2.398	Ru1–Cl1	2.387
B1 -F2	1.377	Ru1–Cg	1.685	Ru1–Cg	2.199
C5 –C10	1.483	Ru1–Cav	2.189	Ru1–Cav	1.683
Bond		Bond		Bond	
Angle (°)		Angle (°)		Angle (°)	
N1- B1-N2	105.87°	N3- Ru1-N5	75.40°	N3- Ru1-N5	74.77°
F1- B1-F2	109.76°	N3- Ru1-Cl1	85.26°	N3- Ru1-Cl1	86.92°
N1- B1-F1	110.57°	N5-Ru1-Cl1	84.31°	N5-Ru1-Cl1	87.55°
N2- B1-F2	110.17°	Cg–Ru1–Cl1	130.51°	Cg–Ru1–Cl1	128.60°
N1- B1-F2	110.46°	Cg– Ru1–N3	134.08°	Cg–Ru1–N3	131.65°
N5- B1-F1	109.96°	Cg-Ru1-N5	127.70°	Cg–Ru1–N5	129.42°

Table S1. Selected bond lengths (Å) and angles (°) for L1, 1 and 4.

Table S2: Changes in UV-Vis of **1–4** increasing concentrations of CT-DNA (0–20 μ M) at room temperature.

Complex	λ_{abs}	Changes in molar	% Hypochroism
	(nm)	extinction coefficient	
		$\mathcal{E}(M^{-1}cm^{-1}) \ge 10^4$	
1	512	4.51-3.80	15.7%
	336	2.02-1.76	12.8%
2	511	6.00-5.00	16.6%
	339	2.57-2.20	14.4%
3	512	6.05-5.07	16.1%
	346	2.76-2.39	13.40%
4	511	5.54-4.52	18.4%
	349	2.28-1.95	14.5%

Table S3. Log *P* Values for the complexes 1–4.

Log P				
Complex	Mean	SD		
1	0.90	0.02		
2	0.84	0.03		
3	0.77	0.02		
4	0.69	0.02		

Results are the means of three independent experiments and are expressed as means \pm SDs.

Table S4. Fluorescence lifetime and electrochemical data of ligands L1–L2 and complexes 1–4 in acetonitrile.

Compound	λ _{em} (nm)	Quantum yield (%)	<τ _{avg} > (ns)	Е _{рс,} (V)
L1	520	18	0.75	-0.85
L2	521	13	0.95	-0.90
1	528	3.9	0.55	-0.75
2	530	6.4	0.50	-0.80
3	529	3.9	0.65	-0.82
4	530	4.1	0.35	-0.86

Fluorescence quantum yield in acetonitrile solution estimated using Rhodamine 6G as standard ($\Phi_F = 95\%$ in water).

Table S5: Kinetic data for the hydrolysis of complex **2** and **4** monitored by UV-Vis at 298 K at dark(a; up to 12 h) and light (b; up to 2 h; 400–700 nm, 10 J cm⁻²)

Compound	k(min ⁻¹) ^a	t _{1/2} (min) ^a	k(min ⁻¹) ^b	$t_{1/2}(\min)^b$
2	0.00045	1540	0.002	346.5
4	0.00060	1155	0.003	231