Supporting Information

A new salicylaldehyde-based azo dye and its two lanthanide(III)

complexes displaying slow magnetic relaxation

Jian-Qiang He,^a Shang-Fang Xie,^a Bi-Lin Lai,^a Meng Yang,^a Wen-Bin Chen,^{*a} Yi-Quan Zhang^{*b} and Wen Dong^{*a}

 Guangzhou Key Laboratory for Environmentally Functional Materials and Technology, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China. E-mail: 772694131@qq.com; dw320@aliyun.com.

b. Jiangsu Key Laboratory for NSLSCS, School of Physical Science and Technology, Nanjing Normal University, Nanjing 210023, P. R. China. E-mail: zhangyiquan@njnu.edu.cn.

Complex	Ln	SAPR-8	TDD-8	JBTPR-8	BTPR-8
1	Dy1	0.513	1.822	1.871	1.623
1	Dy2	0.679	1.244	1.927	1.552
2	Tb1	0.516	1.702	1.923	1.673
2	Tb2	0.693	1.252	1.963	1.677

Table S1 SHAPE analysis for **1** and **2**.

SAPR-8 = square antiprism; TDD-8 = triangular dodecahedron; JBTPR-8 = Biaugmented trigonal prism; JSD-8 = Snub diphenoid J84.

e		1	
Dy(1)-O(1)	2.373(5)	Tb(1)-O(1)	2.384(8)
Dy(1)-O(2)	2.350(5)	Tb(1)-O(2)	2.351(8)
Dy(1)-O(3)	2.400(5)	Tb(1)-O(3)	2.415(8)
Dy(1)-O(4)	2.301(5)	Tb(1)-O(4)	2.313(8)
Dy(1)-O(6)	2.453(6)	Tb(1)-O(6)	2.472(7)
Dy(1)-O(7)	2.283(5)	Tb(1)-O(7)	2.287(7)
Dy(1)-O(9)	2.388(5)	Tb(1)-O(9)	2.386(7)
Dy(1)-O(10)	2.284(5)	Tb(1)-O(10)	2.290(8)
Dy(2)-O(12)	2.342(5)	Tb(2)-O(12)	2.349(8)
Dy(2)-O(13)	2.475(5)	Tb(2)-O(13)	2.481(8)

Table S2. The bond lengths [Å] and angles $[\circ]$ for complex **1** and **2**.

Dy(2)-O(14)	2.256(5)	Tb(2)-O(14)	2.278(8)
Dy(2)-O(16)	2.392(5)	Tb(2)-O(16)	2.406(8)
Dy(2)-O(17)	2.395(6)	Tb(2)-O(17)	2.418(8)
Dy(2)-O(18)	2.298(5)	Tb(2)-O(18)	2.315(8)
Dy(2)-O(20)	2.383(5)	Tb(2)-O(20)	2.394(8)
Dy(2)-O(21)	2.325(5)	Tb(2)-O(21)	2.333(7)
O(1)-Dy(1)-O(3)	72.79(19)	O(1)-Tb(1)-O(3)	72.6(3)
O(1)-Dy(1)-O(6)	121.42(19)	O(1)-Tb(1)-O(6)	121.9(3)
O(1)-Dy(1)-O(9)	75.31(18)	O(1)-Tb(1)-O(9)	75.4(3)
O(2)-Dy(1)-O(1)	70.18(18)	O(2)-Tb(1)-O(1)	70.4(3)
O(2)-Dy(1)-O(3)	86.41(19)	O(2)-Tb(1)-O(3)	85.9(3)
O(2)-Dy(1)-O(6)	73.39(18)	O(2)-Tb(1)-O(6)	74.1(3)
O(2)-Dy(1)-O(9)	143.50(18)	O(2)-Tb(1)-O(9)	143.7(3)
O(3)-Dy(1)-O(6)	147.10(17)	O(3)-Tb(1)-O(6)	147.2(2)
O(4)-Dy(1)-O(1)	133.21(18)	O(4)-Tb(1)-O(1)	132.7(3)
O(4)-Dy(1)-O(2)	78.00(19)	O(4)-Tb(1)-O(2)	77.4(3)
O(4)-Dy(1)-O(3)	71.82(18)	O(4)-Tb(1)-O(3)	71.4(3)
O(4)-Dy(1)-O(6)	78.63(18)	O(4)-Tb(1)-O(6)	79.0(3)
O(4)-Dy(1)-O(9)	120.18(19)	O(4)-Tb(1)-O(9)	120.2(3)
O(7)-Dy(1)-O(1)	75.06(18)	O(7)-Tb(1)-O(1)	75.8(2)
O(7)-Dy(1)-O(2)	104.71(19)	O(7)-Tb(1)-O(2)	105.5(3)
O(7)-Dy(1)-O(3)	139.80(18)	O(7)-Tb(1)-O(3)	140.2(2)
O(7)-Dy(1)-O(4)	147.86(18)	O(7)-Tb(1)-O(4)	147.8(3)
O(7)-Dy(1)-O(6)	71.84(17)	O(7)-Tb(1)-O(6)	71.4(2)
O(7)-Dy(1)-O(9)	76.88(18)	O(7)-Tb(1)-O(9)	76.8(3)
O(7)-Dy(1)-O(10)	80.47(18)	O(7)-Tb(1)-O(10)	80.2(3)
O(9)-Dy(1)-O(3)	72.15(18)	O(9)-Tb(1)-O(3)	72.5(3)
O(9)-Dy(1)-O(6)	137.62(17)	O(9)-Tb(1)-O(6)	137.0(2)
O(10)-Dy(1)-O(1)	143.38(18)	O(10)-Tb(1)-O(1)	143.5(3)
O(10)-Dy(1)-O(2)	143.62(18)	O(10)-Tb(1)-O(2)	143.7(3)
O(10)-Dy(1)-O(3)	113.13(19)	O(10)-Tb(1)-O(3)	112.9(3)
O(10)-Dy(1)-O(4)	79.61(18)	O(10)-Tb(1)-O(4)	79.8(3)
O(10)-Dy(1)-O(6)	74.34(18)	O(10)-Tb(1)-O(6)	74.1(3)
O(10)-Dy(1)-O(9)	72.87(18)	O(10)-Tb(1)-O(9)	72.6(3)
O(12)-Dy(2)-O(13)	73.88(18)	O(12)-Tb(2)-O(13)	74.6(2)
O(12)-Dy(2)-O(16)	73.37(18)	O(12)-Tb(2)-O(16)	73.7(3)
O(12)-Dy(2)-O(17)	83.91(18)	O(12)-Tb(2)-O(17)	84.2(3)
O(12)-Dy(2)-O(20)	145.01(19)	O(12)-Tb(2)-O(20)	145.0(2)
O(14)-Dy(2)-O(12)	106.24(19)	O(14)-Tb(2)-O(12)	106.5(3)
O(14)-Dy(2)-O(13)	70.89(18)	O(14)-Tb(2)-O(13)	70.1(2)
O(14)-Dy(2)-O(16)	72.37(18)	O(14)-Tb(2)-O(16)	72.2(2)
O(14)-Dy(2)-O(17)	138.83(18)	O(14)-Tb(2)-O(17)	139.1(3)
O(14)-Dy(2)-O(18)	147.40(19)	O(14)-Tb(2)-O(18)	147.4(3)

O(14)-Dy(2)-O(20)	78.88(19)	O(14)-Tb(2)-O(20)	78.5(3)
O(14)-Dy(2)-O(21)	80.01(18)	O(14)-Tb(2)-O(21)	79.9(2)
O(16)-Dy(2)-O(13)	120.27(18)	O(16)-Tb(2)-O(13)	120.1(3)
O(16)-Dy(2)-O(17)	72.82(19)	O(16)-Tb(2)-O(17)	73.5(3)
O(17)-Dy(2)-O(13)	148.06(16)	O(17)-Tb(2)-O(13)	148.9(3)
O(18)-Dy(2)-O(12)	79.79(19)	O(18)-Tb(2)-O(12)	79.9(3)
O(18)-Dy(2)-O(13)	80.63(18)	O(18)-Tb(2)-O(13)	81.5(3)
O(18)-Dy(2)-O(16)	138.17(18)	O(18)-Tb(2)-O(16)	138.5(3)
O(18)-Dy(2)-O(17)	72.95(19)	O(18)-Tb(2)-O(17)	72.5(3)
O(18)-Dy(2)-O(20)	114.85(19)	O(18)-Tb(2)-O(20)	114.9(3)
O(18)-Dy(2)-O(21)	76.75(18)	O(18)-Tb(2)-O(21)	76.6(2)
O(20)-Dy(2)-O(13)	137.50(17)	O(20)-Tb(2)-O(13)	136.5(2)
O(20)-Dy(2)-O(16)	75.59(18)	O(20)-Tb(2)-O(16)	75.2(3)
O(20)-Dy(2)-O(17)	71.75(18)	O(20)-Tb(2)-O(17)	71.9(3)
O(21)-Dy(2)-O(12)	142.01(18)	O(21)-Tb(2)-O(12)	141.9(2)
O(21)-Dy(2)-O(13)	73.14(17)	O(21)-Tb(2)-O(13)	72.6(3)
O(21)-Dy(2)-O(16)	141.23(17)	O(21)-Tb(2)-O(16)	141.0(2)
O(21)-Dy(2)-O(17)	116.43(18)	O(21)-Tb(2)-O(17)	116.0(3)
O(21)-Dy(2)-O(20)	72.75(18)	O(21)-Tb(2)-O(20)	72.9(2)

Fig. S1 Schematic illustration for ¹H NMR peaks of H₂TMSA in DMSO-d⁶.

Fig. S2 Schematic illustration for ¹³C NMR peaks of H₂TMSA in DMSO-d⁶.

Fig. S3 Absorbance spectra of the TMSA in ethanol, after adjusted the pH value to 13.21, and recovered the pH value by the dilute solution of HCl ($c = 1 \text{ mol } L^{-1}$). pH: 13.21-10.24 (a);10.24-3.34 (b). Arrows indicate changes in UV-vis absorption.

Fig. S4 Thermal gravimetric analyses (TGA) curves for complex 1 and 2.

Fig. S5 Powder X-ray diffraction (PXRD) patterns for complexes 1 and 2.

Fig. S6 Plots of M-H (a) and M-H/T (b) for 1 at 2, 3 and 5 K. The solid lines are guides to the eyes.

Fig. S7 Plots of M-H (a) and M-H/T (b) for 2 at 2, 3 and 5 K. The solid lines are guides to the eyes.

Fig. S8 Temperature dependence of the in-phase $(\chi_M'T)$ and out-of-phase (χ_M'') products at a zero field for **1**, with ac frequencies of 1–1000 Hz. The solid lines are guides to the eyes.

T / K	τ	τ	α	α	χο	χο	χ_{∞}	χ_{∞}
	Value	Standard Error	Value	Standard Error	Value	Standard Error	Value	Standard Error
10	4.00E-04	1.27E-05	0.26429	0.00893	2.34481	0.00377	0.98921	0.02017
9.5	4.68E-04	1.24E-05	0.25292	0.00818	2.46689	0.00404	0.97029	0.01882
9	5.72E-04	1.28E-05	0.24297	0.0076	2.6011	0.00441	0.96512	0.01738
8.5	7.15E-04	1.50E-05	0.23995	0.00772	2.75504	0.00534	0.95955	0.01769
8	9.17E-04	1.93E-05	0.24238	0.00816	2.92856	0.00675	0.95919	0.01877
7.5	0.0012	2.57E-05	0.25335	0.00854	3.12831	0.00852	0.96305	0.01989
7	0.0016	3.60E-05	0.27184	0.00902	3.3622	0.01098	0.97197	0.02157
6.5	0.00214	5.22E-05	0.29915	0.00963	3.6388	0.01455	0.97578	0.0242
6	0.00282	7.44E-05	0.33352	0.00996	3.97188	0.01911	0.96902	0.02706
5.5	0.00368	1.01E-04	0.36975	0.00987	4.36754	0.0244	0.94845	0.02953
5	0.00479	1.29E-04	0.40305	0.00914	4.84987	0.02949	0.92587	0.03039
4.5	0.0062	1.60E-04	0.42997	0.00822	5.43547	0.0345	0.91847	0.03029
4.2	0.00714	1.79E-04	0.44451	0.00768	5.85134	0.03767	0.91714	0.03029
3.9	0.00805	2.02E-04	0.45569	0.00734	6.31367	0.04169	0.92218	0.03108
3.6	0.00902	2.28E-04	0.46625	0.00708	6.87481	0.04684	0.92678	0.0325
3.3	0.00993	2.54E-04	0.47396	0.00691	7.50593	0.05271	0.94188	0.03443
3	0.01081	2.81E-04	0.47989	0.00678	8.2596	0.05968	0.9662	0.03696
2.7	0.01171	3.15E-04	0.48811	0.00673	9.18864	0.06943	0.98497	0.04089
2.4	0.01251	3.43E-04	0.49526	0.00661	10.34123	0.08025	1.0136	0.04537
2.1	0.01322	3.67E-04	0.5023	0.00646	11.75593	0.09271	1.05092	0.05065
1.8	0.01379	3.94E-04	0.50876	0.00643	13.54754	0.11001	1.10895	0.05858

Table S3 Relaxation fitting parameters from Least-Squares Fitting of $\chi(\omega)$ data for 1 at zero dc field.

Fig. S9 The plots of $\ln(\tau)$ vs. T⁻¹ for **1** under zero dc fields. The red line represents fit the data in the high temperature region with an Arrhenius law, resulting in an energy barrier $U_{eff} = 20.9(6)$ K, pre-exponential factor $\tau_0 = 2.0 \times 10^{-6}$ s.

Complexes	$U_{\rm eff}$ / cm ⁻¹ ($H_{\rm dc}$ / Oe)	Ref
[Dy ₂ (acac) ₆ (bpe)(MeOH) ₂]·bpe·2MeOH	71.7 cm ⁻¹ (1500 Oe)	Inorg. Chem. 2017, 56, 8829–8836. ¹
[Dy(acac) ₃ (bpe)] _n	33.7 cm ⁻¹ (800 Oe)	
[(dtc) ₃ Dy(phen)]	13.9 cm ⁻¹ (400 Oe)	Dalton Trans., 2016, 45, 8149–8153. ²
[(dbm) ₂ Dy(dtc)(phen)]	27.8 cm ⁻¹ (0 Oe)/31.2 cm ⁻¹ (1000	
	Oe)	
[Dy(acac) ₃ (H ₂ O) ₂]	45.9 cm ⁻¹ (0 Oe)	Angew. Chem. Int. Ed. 2010, 49, 7448 -
		7451. ³
$[hqH_2][Dy_2(hq)_4(NO_3)_3] \cdot MeOH$	40.9 cm ⁻¹ (1000 Oe)	Nat. Commun., 2014, 5, 5243.4
[TBA][Pc ₂ Dy]	27.8 cm ⁻¹ (0 Oe)	J. Am. Chem. Soc., 2003, 125,
		8694-8695.5
[Dy(HATSA)(OAc)(H ₂ O) ₂]·4H ₂ O	2.4 cm ⁻¹ (0 Oe)/25.5 cm ⁻¹ (1000	Inorg. Chim. Acta, 2018, 469, 38-43.6
	Oe)	
{[Dy(HTMSA) ₃ (H ₂ O) ₂][Dy(HTMSA) ₃ (D	20.9 cm ⁻¹ (0 Oe)	This work
$MF)(H_2O)] \cdot 15H_2O$		

Table S4 Selected Dy complexes with square antiprism geometry.

 $acac=acetylacetone; \ bp=1,2-bis(4-pyridyl)ethylene; \ dtc = diethyldithiocarbamate; \ dbm= dibenzoylmethanoate; \ phen= phenanthroline; \ hq=8-hydroxy \ quinoline; \ Pc= phthalocyanine; \ TBA = N(C_4H_9)_4. \ H_3ATSA = 5-azotriazolyl \ salicylic \ acid.$

Fig. S10 Temperature dependence of the in-phase (χ_M') and out-of-phase (χ_M'') products at zero dc field for **2**.

Fig. S11 (a) Frequency dependence of χ'_M and χ''_M signals at various fields at 3 K for **2**. The solid lines are guides to the eyes. (b) Field dependence of the magnetic relaxation time (τ).

H / Oe	τ	τ	α	α	χο	χo	χ_{∞}	χ_{∞}
	Value	Standard	Value	Standard	Value	Standard	Value	Standard
		Error		Error		Error		Error
0	2.13E-04	1.63E-05	-0.53026	0.10216	7.14695	0.00533	7.21519	0.01452
200	7.93E-08	1.29E-04	-0.21448	0.09941	7.10403	0.00533	-1707.17	3.38E+06
400	1.42E-05	3.50E-06	0.11251	0.01233	7.03171	0.00331	0.16157	1.27277
600	5.90E-05	2.61E-06	0.10713	0.00664	6.90858	0.00404	2.24768	0.13773
800	1.02E-04	2.75E-06	0.12759	0.00591	6.75023	0.00606	1.71236	0.08556
1000	1.59E-04	3.13E-06	0.14982	0.00563	6.56926	0.00829	1.29197	0.06305
1200	2.19E-04	3.44E-06	0.17515	0.0052	6.36851	0.00984	0.87024	0.05024
1500	3.26E-04	4.44E-06	0.19401	0.0054	6.01044	0.01288	0.50013	0.04251
1800	4.41E-04	5.24E-06	0.20267	0.00536	5.63548	0.01435	0.3324	0.03503
2100	5.31E-04	6.68E-06	0.20748	0.00607	5.22548	0.01681	0.22011	0.03441
2400	5.79E-04	1.41E-05	0.2127	0.01201	4.79346	0.0324	0.12574	0.06121
2700	5.91E-04	1.43E-05	0.21946	0.01191	4.38855	0.03021	0.05728	0.05604
3000	5.64E-04	1.51E-05	0.2488	0.01222	4.05476	0.02925	-0.04339	0.0568
3500	4.84E-04	1.91E-05	0.28979	0.01547	3.51625	0.03199	-0.16205	0.07162
4000	3.61E-04	2.62E-05	0.35806	0.02096	3.0725	0.03818	-0.37637	0.11052
4500	2.38E-04	3.45E-05	0.42758	0.028	2.68458	0.04521	-0.62558	0.18182
5000	1.26E-04	3.57E-05	0.49986	0.03312	2.36578	0.04852	-0.98853	0.30281

Table S5 Relaxation fitting parameters from Least-Squares Fitting of $\chi(\omega)$ data for **2** at various dc field at 3 K.

Fig. S12 Temperature dependence of the in-phase (χ_M '*T*) and out-of-phase (χ_M '') products at 2400 Oe field for **2**, with ac frequencies of 1–1000 Hz. The solid lines are guides to the eyes.

T/K	τ	τ	α	α	χ_0	χ_0	χ_{∞}	χ_{∞}
	V-1	Standard	X7-1	Standard	V-1	Standard	V-1	Standard
	value	Error	value	Error	value	Error	value	Error
1.8	8.42E-04	1.05E-05	0.18035	0.00684	5.4445	0.02224	0.24171	0.03362
1.9	7.87E-04	1.16E-05	0.19663	0.00778	5.26115	0.02408	0.19976	0.0387
2	7.42E-04	1.43E-05	0.20253	0.00993	5.12059	0.02938	0.17704	0.04972
2.15	7.14E-04	1.52E-05	0.21313	0.01067	5.06692	0.03109	0.14284	0.05453
2.3	6.73E-04	1.49E-05	0.21695	0.01079	4.96634	0.03013	0.1335	0.0557
2.4	6.53E-04	1.57E-05	0.22979	0.01133	4.95723	0.0317	0.08745	0.06032
2.6	6.30E-04	1.38E-05	0.23137	0.01021	4.94579	0.0281	0.08173	0.05524
2.8	6.07E-04	1.25E-05	0.22278	0.0096	4.92403	0.02565	0.0985	0.05203
3	5.85E-04	1.57E-05	0.21492	0.01259	4.89437	0.03264	0.1113	0.06841
3.2	5.70E-04	8.54E-06	0.20053	0.00715	4.85628	0.01783	0.16408	0.03816
3.4	5.47E-04	7.51E-06	0.18983	0.0066	4.7895	0.01575	0.19145	0.03491
3.6	5.26E-04	6.26E-06	0.18483	0.0057	4.72739	0.01309	0.20839	0.03005
3.8	4.99E-04	6.50E-06	0.17321	0.00626	4.61443	0.01355	0.23358	0.03253
4.1	4.66E-04	7.39E-06	0.1589	0.00764	4.45632	0.01524	0.27151	0.03884
4.4	4.36E-04	6.36E-06	0.14536	0.00704	4.30407	0.01292	0.31444	0.03493
4.7	4.02E-04	7.43E-06	0.13329	0.00885	4.11721	0.01477	0.33492	0.04304
5	3.77E-04	4.76E-06	0.12562	0.00599	3.97539	0.00922	0.36535	0.02857
5.3	3.50E-04	4.49E-06	0.12291	0.00591	3.82893	0.00839	0.37519	0.02798
5.6	3.25E-04	3.62E-06	0.11356	0.00506	3.66374	0.00652	0.39731	0.02342
5.9	3.01E-04	3.58E-06	0.10862	0.00525	3.51396	0.00618	0.40771	0.02404
6.2	2.80E-04	3.52E-06	0.10453	0.00539	3.37558	0.00579	0.42202	0.02439
6.5	2.59E-04	3.43E-06	0.10098	0.00548	3.24155	0.00537	0.43019	0.02459
7	2.26E-04	3.37E-06	0.09847	0.00573	3.03984	0.00482	0.42801	0.02587
7.5	1.99E-04	3.33E-06	0.0925	0.00601	2.8546	0.0043	0.44712	0.02704
8	1.72E-04	2.92E-06	0.09317	0.00552	2.6925	0.00337	0.43766	0.02558
8.5	1.50E-04	3.05E-06	0.08902	0.00607	2.54465	0.00313	0.45425	0.02863
9	1.27E-04	2.85E-06	0.08925	0.00594	2.41131	0.00256	0.45049	0.02952
9.5	1.07E-04	2.67E-06	0.08728	0.00584	2.29006	0.00208	0.45407	0.03089
10	8.96E-05	2.96E-06	0.08645	0.00676	2.18129	0.00195	0.46364	0.03854
10.5	7.20E-05	3.02E-06	0.09055	0.00722	2.08315	0.00167	0.45154	0.04659
11	5.63E-05	3.49E-06	0.09789	0.00879	1.99411	0.00161	0.42403	0.06661
11.5	4.08E-05	3.37E-06	0.10943	0.00907	1.91149	0.0013	0.33733	0.08937

Table S6 Relaxation fitting parameters from Least-Squares Fitting of $\chi(\omega)$ data for 2 at 2400 Oe field.

Fig. S13 The plots of $\ln(\tau)$ vs. T^{-1} for **2** under 2400 Oe dc fields. The red line represents fit the data in the high temperature region with an Arrhenius law, resulting in an energy barrier $U_{\text{eff}} = 32$ (3) K, pre-exponential factor $\tau_0 = 8.4 \times 10^{-7}$ s.

Computational details

Mononuclear complex **1** has two different structures indicated as **Dy1** and **Dy2** (see Fig. S14). Likewise, complex **2** also has two different structures indicated as **Tb1** and **Tb2**. Thus, the **Dy1** and **Dy2** for **1** and the **Tb1** and **Tb2** for **2** were calculated, respectively. Complete-active-space self-consistent field (CASSCF) calculations on the complete structures of **Dy1**, **Dy2**, **Tb1** and **Tb2** extracted from the compounds on the basis of single-crystal X-ray determined geometry have been carried out with MOLCAS 8.2⁷⁻⁹ program package.

The basis sets for all atoms are atomic natural orbitals from the MOLCAS ANO-RCC library: ANO-RCC-VTZP for Dy^{III} or Tb^{III} ion; VTZ for close O; VDZ for distant atoms. The calculations employed the second order Douglas-Kroll-Hess Hamiltonian, where scalar relativistic contractions were taken into account in the basis set and the spin-orbit couplings were handled separately in the restricted active space state interaction (RASSI-SO) procedure. Active electrons in 7 active spaces include all *f* electrons (CAS(9 in 7) for **Dy1** and **Dy2**, and CAS(8 in 7) for **Tb1** and **Tb2**) in the CASSCF calculation. To exclude all the doubts, we calculated all the roots in the active space. We have mixed the maximum number of spin-free state which was possible with our hardware (all from 21 sextets, 128 from 224 quadruplets, 130 from 490 doublets for **Dy1** and **Dy2**; all from 7 septets, all from 140 quintets and 68 from 500 triplets for **Tb1** and **Tb2**). Single–Aniso¹⁰⁻¹² program was used to obtain energy levels, g tensors, m_J values, magnetic axes, *et al.*, based on the above CASSCF/RASSI calculations.

Fig. S14. Calculated structures of Dy1, Dy2, Tb1 and Tb2; H atoms are omitted.

Table S7. Calculated energy levels (cm⁻¹), $g(g_x, g_y, g_z)$ tensors and m_J values of the lowest eight or seven spin-orbit states of **Dy1**, **Dy2**, **Tb1** and **Tb2** using CASSCF/RASSI with MOLCAS 8.2.

		Dy1		Dy2		
	E/cm^{-1}	g	m_J	E/cm^{-1}	g	m_J
		0.003			0.001	
1	0.0	0.004	±15/2	0.0	0.001	±15/2
		19.700			19.619	
		0.038			0.037	
2	169.3	0.078	±13/2	174.4	0.041	±13/2
		16.975			16.762	
		2.549			0.815	
3	248.3	3.151	±1/2	301.4	1.355	±11/2
		15.487			12.941	
		9.072			1.714	
4	281.8	6.510	±9/2	348.0	4.130	±7/2
		0.275			13.517	
		2.902			7.898	
5	342.0	4.681	$\pm 5/2$	388.2	6.426	$\pm 5/2$
		10.056			1.573	
		0.754			1.514	
6	364.7	2.169	±7/2	415.4	3.637	$\pm 3/2$
		16.691			13.217	
		0.174			0.314	
7	421.8	0.251	±3/2	477.7	0.656	$\pm 1/2$
		17.565			18.631	
Q	535.2	0.003	+11/2	611.5	0.010	+0/2
0	333.2	0.019	±11/2	011.5	0.015	±9/2

		18.959			19.637			
		Tb1			Tb2			
	E/cm ⁻¹	g	тј	E/cm^{-1}	g	тj		
	0.0	0.000		0.0	0.000			
1	0.07	0.000	±6	0.12	0.000	±6		
	0.07	17.769		0.13	17.626			
	161.8	0.000		102.9	0.000			
2	1(2.1	0.000	±5	102 (0.000	±5		
	162.1	14.778		103.6	15.607			
	210.9	0.000		148.6	0.000			
3	010.7	0.000	±3	153.3	0.000	±4		
	212.7	15.494			11.990			
	293.1	0.000		224.9	0.000			
4	201.0	0.000	<u>+</u> 4	252.2	0.000	±3		
	301.3	9.377		253.3	8.202			
	371.3	0.000						
5	2 22.4	0.000	±1	290.5		0		
	390.4	5.787						
				362.9	0.000			
6	422.5		0		0.000	±1		
				372.6	13.425			
	521.2	0.000		532.8	0.000			
7	505.1	0.000	±2	524.0	0.000	±2		
	525.1	16.662		534.0	17.078			

Table S8. Wave functions with definite projection of the total moment $|m_j\rangle$ for the lowest two Kramers doublets (KDs) of **Dy1**, **Dy2**, **Tb1** and **Tb2** using CASSCF/RASSI with MOLCAS 8.2.

	E/cm^{-1}	wave functions
D1	0.0	97% ±15/2>
Dyl	169.3	80% ±13/2>+10% ±11/2>
D2	0.0	96% ±15/2>
Dy2	174.4	89% ±13/2>
	0.00	080/1+6>
TL 1	0.07	98% ±0>
101	161.8	880/1+55+100/1+25
	162.1	88% ±3>+10% ±3>
	0.00	
TL 3	0.13	90% ±0>
102	102.9	
	103.6	$28\% \pm0>+31\% \pm3>+11\% \pm3>+10\% \pm2>$

To fit the exchange interactions between **Dy1** and **Dy2** in **1** (**Tb1** and **Tb2** in **2**), we took two steps to obtain them. Firstly, we calculated **Dy1**, **Dy2**, **Tb1** and **Tb2** using CASSCF to obtain the corresponding magnetic properties. Then, the exchange interaction between the magnetic centers is considered within the Lines model,¹³ while the account of the dipole-dipole magnetic coupling is treated exactly. The Lines model is effective and has been successfully used widely in the research field of *f*-element single-molecule magnets.^{14, 15}

For 1 and 2, there is only one type of *J*.

The exchange Ising Hamiltonian are:

$$H_{\text{exch}} = -JS_{\text{Dy1}}S_{\text{Dy2}}$$
(S1)
$$H_{\text{exch}} = -JS_{\text{Tb1}}S_{\text{Tb2}}$$
(S2)

The *J* is the parameter of the total magnetic interaction ($J_{\text{total}} = J_{\text{diploar}} + J_{\text{exchange}}$) between magnetic center ions. The $S_{\text{Dy}} = \pm 1/2$ and $S_{\text{Tb}} = \pm 1/2$ are the ground pseudospin on Dy^{III} and Tb^{III} sites. The dipolar magnetic coupling can be calculated exactly, while the exchange coupling constants were fitted through comparison of the computed and measured magnetic susceptibilities using the Poly_Aniso program. ¹⁰⁻¹²

	1	l	2		
	E/cm^{-1}	gz	E/cm ⁻¹	gz	
1	0.0	2.802	0.0	4.115	
2	0.1	39.219	0.2	30.207	

Table S9. Exchange energies (cm^{-1}) and main values of the g_z for the lowest two exchange doublets of 1 and 2.

Fig. S15. Calculated orientations of the local main magnetic axes in the ground spin-orbit state on Dy^{III} ions of **1** and Tb^{III} ions of **2**.

References

- L.-F. Wang, J.-Z. Qiu, J.-Y. Hong, Y.-C. Chen, Q.-W. Li, J.-H. Jia, J. Jover, E. Ruiz, J.-L. Liu and M.-L. Tong, *Inorg. Chem.*, 2017, 56, 8829-8836.
- 2. S.-S. Liu, K. Lang, Y. Zhang, Q. Yang, B.-W. Wang and S. Gao, *Dalton Trans.*, 2016, DOI: 10.1039/C6DT01089J.
- 3. S. D. Jiang, B. W. Wang, G. Su, Z. M. Wang and S. Gao, Angew. Chem.Inter. Ed., 2010, 49, 7448-7451.
- E. Moreno Pineda, N. F. Chilton, R. Marx, M. Dörfel, D. O. Sells, P. Neugebauer, S.-D. Jiang, D. Collison, J. van Slageren, E. J. L. McInnes and R. E. P. Winpenny, *Nat. Commun.*, 2014, 5, 5243.
- 5. N. Ishikawa, M. Sugita, T. Ishikawa, S.-y. Koshihara and Y. Kaizu, J. Am. Chem. Soc., 2003, 125, 8694-8695.
- 6. L.-Q. Huang, Y.-Y. Lin, J.-D. Leng, J. Wang, L.-F. Yang and W. Dong, *Inorg. Chim. Acta*, 2018, **469**, 38-43.
- F. Aquilante, L. De Vico, N. Ferré, G. Ghigo, P.-å. Malmqvist, P. Neogrády, T. B. Pedersen, M. Pitoňák, M. Reiher, B. O. Roos,
 L. Serrano-Andrés, M. Urban, V. Veryazov and R. Lindh, *J. Comput. Chem.*, 2010, **31**, 224-247.
- 8. V. Veryazov, P.-O. Widmark, L. Serrano-Andrés, R. Lindh and B. O. Roos, Int. J. Quantum Chem, 2004, 100, 626-635.
- G. Karlström, R. Lindh, P.-Å. Malmqvist, B. O. Roos, U. Ryde, V. Veryazov, P.-O. Widmark, M. Cossi, B. Schimmelpfennig, P. Neogrady and L. Seijo, *Comput. Mater. Sci.*, 2003, 28, 222-239.
- 10. L. F. Chibotaru, L. Ungur and A. Soncini, Angew. Chem. Int. Ed., 2008, 47, 4126-4129.
- 11. L. Ungur, W. Van den Heuvel and L. F. Chibotaru, New J. Chem., 2009, 33, 1224-1230.
- 12. L. F. Chibotaru, L. Ungur, C. Aronica, H. Elmoll, G. Pilet and D. Luneau, J. Am. Chem. Soc., 2008, 130, 12445-12455.
- 13. M. E. Lines, *The Journal of Chemical Physics*, 1971, **55**, 2977-2984.
- K. C. Mondal, A. Sundt, Y. Lan, G. E. Kostakis, O. Waldmann, L. Ungur, L. F. Chibotaru, C. E. Anson and A. K. Powell, *Angew. Chem. Int. Ed.*, 2012, 51, 7550-7554.
- S. K. Langley, D. P. Wielechowski, V. Vieru, N. F. Chilton, B. Moubaraki, B. F. Abrahams, L. F. Chibotaru and K. S. Murray, Angew. Chem. Int. Ed., 2013, 52, 12014-12019.