Thermoelectric properties of $(Ba,K)Cd_2As_2$ crystallized in the CaAl₂Si₂-type structure

H. Kunioka,
^1 K. Kihou, ^1 H. Nishiate, ^1 H. Usui, ^2 K. Kuroki, ^2 and C. H.
 ${\rm Lee^1}$

¹National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568, Japan

²Department of Physics, Osaka University, Toyonaka, Osaka 560-0043, Japan

FIG. S1. Observed (red dots) and calculated (solid black line) x-ray powder diffraction patterns for $BaCd_2As_2$ at room temperature. Vertical bars show the calculated positions of the diffraction peaks for $BaCd_2As_2$. The solid line at the bottom indicates the difference between observations and calculations.

Atom	Site	g	x	у	Z	$B(Å^2)$
BaCd ₂ As ₂						
$a = 4.5142(5)$ Å, $c = 7.6905(7)$ Å, $R_{wp} = 5.46$ %						
Ba	1a	1	0	0	0	0.21(2)
Cd	2d	1	1/3	2/3	0.62892(6)	0.59(2)
As	2d	1	1/3	2/3	0.2632(1)	0.34(2)
$Ba_{0.99}K_{0.01}Cd_2As_2$						
$a = 4.5146(4)$ Å, $c = 7.6930(5)$ Å, $R_{wp} = 5.22$ %						
Ba	1a	0.99	0	0	0	0.10(2)
Κ	1a	0.01	0	0	0	$B_{\rm Ba}$
Cd	2d	1	1/3	2/3	0.62885(6)	0.40(2)
As	2d	1	1/3	2/3	0.26271(9)	0.18(2)
$Ba_{0.98}K_{0.02}Cd_2As_2$						
$a = 4.5151(4)$ Å, $c = 7.6980(5)$ Å, $R_{wp} = 5.40$ %						
Ba	1a	0.98	0	0	0	0.16(2)
K	1a	0.02	0	0	0	$B_{\rm Ba}$
Cd	2d	1	1/3	2/3	0.62895(6)	0.44(2)
As	2d	1	1/3	2/3	0.26266(9)	0.23(2)
$Ba_{0.97}K_{0.03}Cd_2As_2$						
$a = 4.5143(4)$ Å, $c = 7.7021(5)$ Å, $R_{wr} = 5.45$ %						
Ba	1a	0.97	0	0	0	0.25(2)
K	1a	0.03	0	0	0	$B_{\rm Ba}$
Cd	2d	1	1/3	2/3	0.62910(6)	0.57(2)
As	2d	1	1/3	2/3	0.26270(9)	0.36(2)
$Ba_{0.96}K_{0.04}Cd_2As_2$						
$a = 4.5138(4)$ Å, $c = 7.7061(5)$ Å, $R_{\rm wp} = 5.77$ %						
Ba	1a	0.96	0	0	0	0.38(2)
K	1a	0.04	0	0	0	$B_{\rm Ba}$
Cd	2d	1	1/3	2/3	0.62890(6)	0.72(2)
As	2d	1	1/3	2/3	0.2626(1)	0.45(2)
$Ba_{0.92}K_{0.08}Cd_2As_2$						
$a = 4.5119(4)$ Å, $c = 7.7129(5)$ Å, $R_{\rm max} = 6.56$ %						
Ba	1a	0.92	0	0	0	0.35(2)
K	1a	0.08	0	0	0	$B_{\rm Ra}$
Cd	2d	1	1/3	2/3	0.62966(7)	0.80(2)
As	2d	1	1/3	2/3	0.2637(1)	0.62(2)

FIG. S2. Atomic parameters for $Ba_{1-x}K_xCd_2As_2$ (space group $P\bar{3}m1$) determined by Rietveld refinements. The quantities g and B are the site occupancy and the isotropic atomic displacement parameters. The isotropic atomic displacement parameters of K atoms are constrained to be those of Ba atoms (B_{Ba}).

FIG. S3. X-ray diffraction pattern for $Ba_{0.88}K_{0.12}Cd_2As_2$ at room temperature. KCd_4As_3 appears as an impurity phase.

FIG. S4. Temperature dependence of the specific heat for $Ba_{1-x}K_xCd_2As_2$ measured by the laserflash method (circles) and the differential scanning calorimetry (solid line).