## Electronic Supplementary Information

## ${ }^{\dagger}$ Preparation of $\mathrm{Ru}_{3}(\mathrm{CO})_{8}$-pyridine-alcohol cluster and its use for

 selective catalytic transformation of primary to secondary aminesAjeet Singh, ${ }^{\text {a }}$ Shaikh M. Mobin ${ }^{*, a, b, c}$ and Pradeep Mathur*,a<br>${ }^{\text {a }}$ Discipline of Chemistry, ${ }^{\text {b }}$ Discipline for Biosciences and Bio-Medical Engineering, and ${ }^{c}$ Discipline of Metallurgy Engineering and Materials Science, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore 453552, India

Email address: Shaikh M. Mobin (xray@iiti.ac.in) and Pradeep Mathur (director@iiti.ac.in)

## Content:

Table S1. Selected bond lengths ( $\AA$ ) and bond angles $\left({ }^{\circ}\right)$
Fig. S1. Image of complexes 1-3 obtained after re-crystallizing from toluene
Fig. S2. ${ }^{1} \mathrm{H}$ NMR of $\mathbf{1}$
Fig. S3. ${ }^{1} \mathrm{H}$ NMR of 2
Fig. S4. ${ }^{1} \mathrm{H}$ NMR of 3
Fig. S5. ${ }^{13} \mathrm{C}$ NMR of 1
Fig. S6. ${ }^{13} \mathrm{C}$ NMR of 2
Fig. S7. ${ }^{13} \mathrm{C}$ NMR of 3
Fig. S8. LCMS spectrum of 1
Fig. S9. LCMS spectrum of 2
Fig. S10. LCMS spectrum of 3
Fig. S11. IR of 1
Fig. S12. IR of 2
Fig. S13. IR of 3
Fig. S14. 1D polymeric chain of complex 1
Fig. S15. 1D polymeric chain of complex 2
Fig. S16. 1D polymeric chain of complex 3
Fig. S17. Seven-members ring in complex 2 involving C13-C16, O2, N2, Ru2
Fig. S18. Hydrogen bonding in $\mathbf{3}$ between H2A $\cdots \mathrm{O} 4$ with distance $2.035 \AA$
Table S2. Symmetry operators present in complex 1
Table S3. Symmetry operators present in complex 2
Table S4. Symmetry operators present in complex 3
Fig. S19. Symmetry operators present in 1
Fig. S20. Symmetry operators present in 2
Fig. S21. Symmetry operators present in 3
Fig. S22. 2D network of 1 along tilted c-axis
Fig. S23. 3D network of 1 along b-axis

Page No. 5-6
Page No. 7
Page No. 8
Page No. 9
Page No. 10
Page No. 11
Page No. 12
Page No. 13
Page No. 14
Page No. 15
Page No. 16
Page No. 17
Page No. 18
Page No. 19
Page No. 20
Page No. 21
Page No. 21
Page No. 22
Page No. 22
Page No. 23
Page No. 24
Page No. 25
Page No. 26
Page No. 27
Page No. 28
Page No. 29
Page No. 30

Fig. S24. 2D network of 2 along c-axis
Fig. S25. 3D network of 2 along tilted a-axis
Fig. S26. 2D network of 3 along b-axis
Fig. S27. 3D network of $\mathbf{3}$ along tilted a-axis
Fig. S28. GCMS of table 3, entry no. 3 (chromatogram and mass peaks)
Fig. S29. GCMS of table 3, entry no. 4 (chromatogram and mass peaks)
Fig. S30. GCMS of table 3, entry no. 5 (chromatogram and mass peaks)
Fig. S31. GCMS of table 3, entry no. 6 (chromatogram and mass peaks)
Fig. S32. GCMS of table 3, entry no. 7 (chromatogram and mass peaks)
Fig. S33. GCMS of table 3, entry no. 8 (chromatogram and mass peaks)
Fig. S34. GCMS of table 3, entry no. 9 (chromatogram and mass peaks)
Fig. S35. GCMS of table 4, entry no. 2 (chromatogram and mass peaks)
Fig. S36. GCMS of table 4, entry no. 3 (chromatogram and mass peaks)
Fig. S37. GCMS of table 4, entry no. 4 (chromatogram and mass peaks)
Fig. S38. GCMS of table 4, entry no. 5 (chromatogram and mass peaks)
Fig. S39. GCMS of table 4, entry no. 6 (chromatogram and mass peaks)
Fig. S40. GCMS of table 4, entry no. 7 (chromatogram and mass peaks)
Fig. S41. GCMS of table 4, entry no. 8 (chromatogram and mass peaks)
Fig. S42. GCMS of table 4, entry no. 11 (chromatogram and mass peaks)
Fig. S43. GCMS of table 4, entry no. 12 (chromatogram and mass peaks)
Fig. S44. GCMS of table 4, entry no. 13 (chromatogram and mass peaks)
Fig. S45. GCMS of table 4, entry no. 14 (chromatogram and mass peaks)
Fig. S46. GCMS of table 4, entry no. 15 (chromatogram and mass peaks)
Fig. S47. GCMS of table 4, entry no. 16 (chromatogram and mass peaks)
Fig. S48. GCMS of table 4, entry no. 17 (chromatogram and mass peaks)
Fig. S49. GCMS of table 4, entry no. 18 (chromatogram and mass peaks)
Fig. S50. GCMS of table 4, entry no. 19 (chromatogram and mass peaks)
Fig. S51. GCMS of table 4, entry no. 20 (chromatogram and mass peaks)
Fig. S52. GCMS of table 5, entry no. 1 (chromatogram and mass peaks)

Page No. 31
Page No. 32
Page No. 33
Page No. 34
Page No. 35
Page No. 36
Page No. 37
Page No. 38
Page No. 39
Page No. 40
Page No. 41
Page No. 42
Page No. 43
Page No. 44
Page No. 45
Page No. 46
Page No. 47
Page No. 48
Page No. 49
Page No. 50
Page No. 51
Page No. 52
Page No. 53
Page No. 54
Page No. 55
Page No. 56
Page No. 57
Page No. 58
Page No. 59

Fig. S53. GCMS of table 5, entry no. 2 (chromatogram and mass peaks)
Fig. S54. GCMS of table 5, entry no. 3 (chromatogram and mass peaks)
Fig. S55. GCMS of table 5, entry no. 4 (chromatogram and mass peaks)
Fig. S56. GCMS of table 5, entry no. 5 (chromatogram and mass peaks)
Fig. S57. GCMS of table 5, entry no. 6 (chromatogram and mass peaks)
Fig. S58. GCMS of table 5, entry no. 7 (chromatogram and mass peaks)
Fig. S59. GCMS of table 5, entry no. 8 (chromatogram and mass peaks)
Fig. S60. ${ }^{1} \mathrm{H}$ NMR of N-benzyl-1-(pyridin-2-yl)methanamine (Table 6, entry 1) Page No. 67
Fig. S61. ${ }^{13} \mathrm{C}$ NMR of N-benzyl-1-(pyridin-2-yl)methanamine (Table 6, entry 1) Page No. 68
Fig. S62. ${ }^{1} \mathrm{H}$ NMR of o-toluidine (Table 6, entry 4)
Fig. S63. ${ }^{13} \mathrm{C}$ NMR of o-toluidine (Table 6, entry 4)
Fig. S64. ${ }^{1} \mathrm{H}$ NMR of p-toluidine (Table 6, entry 7)
Fig. S65. ${ }^{13} \mathrm{C}$ NMR of p-toluidine (Table 6, entry 7)
Fig. S66. ${ }^{1} \mathrm{H}$ NMR of N -(pyridin-2-ylmethyl)pyridin-4-amine (Table 6, entry 11) Page No. 73
Fig. S67. ${ }^{13} \mathrm{C}$ NMR of N-(pyridin-2-ylmethyl)pyridin-4-amine (Table 6, entry 11) Page No. 74
Fig. S68. ${ }^{1} \mathrm{H}$ NMR of N -benzyl-2,4,6-trimethoxyaniline (Table 4, entry 20)
Fig. S69. ${ }^{13} \mathrm{C}$ NMR of N -benzyl-2,4,6-trimethoxyaniline (Table 4, entry 20)
Fig. S70. ${ }^{1}$ H NMR of bis(pyridin-2-ylmethyl)amine (Table 7, entry 1)
Fig. S71. ${ }^{13} \mathrm{C}$ NMR of bis(pyridin-2-ylmethyl)amine (Table 7, entry 1)
Page No. 75
Page No. 76
Page No. 77
Page No. 78
Fig. S72. ${ }^{1}$ H NMR of N-(4-isopropylbenzyl)-1-(pyridin-2-yl)methanamine (Table 7, entry 5)
Page No. 79
Fig. S73. ${ }^{13}$ C NMR of N-(4-isopropylbenzyl)-1-(pyridin-2-yl)methanamine (Table 7, entry 5) Page No. 80

Fig. S74. Mercury Poisoning experiment of the standard reaction between benzyl alcohol and picolylamine
X-Ray crystallography experimental details and references Page No. 82
Fig. S75. Perspective view of 1a
Page No. 83
Table S5 Crystal data and structure refinement for 1a
Page No. 84
References
Page No. 85

Table S1. Selected bond lengths ( $\AA$ ) and bond angles ( ${ }^{\circ}$ )

| Bond Lengths for 1 |
| :--- |


| Atom | Atom | Length/ $\boldsymbol{\AA}$ |  | Atom | Atom | Length/ $\boldsymbol{\AA}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Ru1 | Ru2 | $3.0697(3)$ |  | Ru1 | N1 | $2.211(2)$ |
| Ru1 | Ru3 | $2.8130(3)$ |  | Ru1 | C16 | $1.860(3)$ |
| Ru2 | C18 | $1.860(3)$ |  | Ru1 | C15 | $1.854(3)$ |
| Ru2 | Ru3 | $2.8147(3)$ |  | O1 | C7 | $1.422(3)$ |
| Ru1 | O1 | $2.1178(16)$ |  | O4 | C16 | $1.159(3)$ |
| Ru1 | O2 | $2.1558(16)$ |  |  |  |  |

Bond Angles for 1

| Atom | Atom | Atom | ${\text { Angle } /{ }^{\circ}}^{\circ}$ | Atom | Atom | Atom | Angle $^{\circ}{ }^{\circ}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Ru3 | Ru1 | Ru2 | $56.972(7)$ | N1 | Ru1 | Ru2 | $113.08(5)$ |
| O1 | Ru1 | Ru2 | $44.15(5)$ | O2 | Ru1 | Ru3 | $82.35(5)$ |

Bond Lengths for 2

| Atom | Atom | Length/ $\boldsymbol{\AA}$ |  | Atom | Atom | Length/ $\AA$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Ru2 | Ru1 | $3.0307(4)$ |  | Ru1 | O1 | $2.096(3)$ |
| Ru2 | Ru3 | $2.7919(5)$ |  | Ru1 | N1 | $2.243(4)$ |
| Ru2 | O2 | $2.104(3)$ |  | Ru1 | C17 | $1.845(5)$ |
| Ru2 | O1 | $2.116(3)$ |  | Ru1 | C18 | $1.838(4)$ |
| Ru2 | N2 | $2.251(3)$ |  | Ru3 | C23 | $1.940(5)$ |
| Ru2 | C19 | $1.840(5)$ |  | Ru3 | C21 | $1.936(5)$ |
| Ru2 | C20 | $1.840(5)$ |  | Ru3 | C24 | $1.910(6)$ |
| Ru1 | Ru3 | $2.8038(5)$ |  | Ru3 | C22 | $1.928(6)$ |
| Ru1 | O2 | $2.112(3)$ |  |  |  |  |

## Bond Angles for 2

| Atom | Atom | Atom | Angle $^{\circ}{ }^{\circ}$ | Atom | Atom | Atom | Angle $/^{\circ}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Ru3 | Ru2 | Ru1 | $57.398(13)$ | N1 | Ru1 | Ru2 | 110.35(10) |
| O2 | Ru2 | Ru1 | $44.14(8)$ | N1 | Ru1 | Ru3 | $167.29(10)$ |
| O2 | Ru2 | Ru3 | $85.19(8)$ |  |  |  |  |

Bond Lengths for 3

| Atom | Atom | Length/ $\AA$ |  | Atom | Atom | Length/ $\AA$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |


| Ru1 | Ru2 | $3.0448(9)$ |  | Ru2 | N2 | $2.239(6)$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Ru1 | Ru3 | $2.7808(9)$ |  | Ru2 | C17 | $1.845(10)$ |
| Ru1 | O1 | $2.084(5)$ |  | Ru2 | C18 | $1.830(9)$ |
| Ru1 | O3 | $2.135(5)$ |  | Ru3 | C19 | $1.942(10)$ |
| Ru1 | N1 | $2.215(6)$ |  | Ru3 | C22 | $1.921(11)$ |
| Ru1 | C16 | $1.858(10)$ |  | Ru3 | C20 | $1.912(10)$ |
| Ru1 | C15 | $1.823(9)$ |  | Ru3 | C21 | $1.937(10)$ |
| Ru2 | Ru3 | $2.7651(10)$ |  | O1 | C6 | $1.412(8)$ |
| Ru2 | O1 | $2.140(5)$ |  | O3 | C13 | $1.410(8)$ |
| Ru2 | O3 | $2.081(5)$ |  | Ru2 | N2 | $2.239(6)$ |

Bond Angles for 3

| Atom | Atom | Atom | Angle $/{ }^{\circ}$ | Atom | Atom | Atom | Angle $/{ }^{\circ}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Ru3 | Ru1 | Ru2 | $56.45(2)$ | N1 | Ru1 | Ru2 | $101.03(18)$ |
| O1 | Ru1 | Ru2 | $44.61(13)$ | N1 | Ru1 | Ru3 | $156.97(19)$ |
| O1 | Ru1 | Ru3 | $81.62(13)$ |  |  |  |  |



Fig. S1. Image of complexes 1-3 obtained after re-crystallizing from toluene


Fig. S2. ${ }^{1} \mathrm{H}$ NMR of $\mathbf{1}$


Fig. S3. ${ }^{1} \mathrm{H}$ NMR of 2


Fig. S4. ${ }^{1} \mathrm{H}$ NMR of 3


Fig. S5. ${ }^{13} \mathrm{C}$ NMR of $\mathbf{1}$


Fig. S6. ${ }^{13} \mathrm{C}$ NMR of 2


Fig. S7. ${ }^{13} \mathrm{C}$ NMR of 3


Fig. S8. LCMS of $\mathbf{1}$


Fig. S9. LCMS of 2


Fig. S10. LCMS of 3


Page 1/1

Fig. S11. IR of 1


Page 1/1
Fig. S12. IR of 2


| E:Ajeet Singh1Aj-RuP2DM. $0 \quad$ Aj-RuP2DM $\quad$ crystal | 24/03/2017 |
| :--- | :---: | :---: |

Page 1/1

Fig. S13. IR of 3

## Description of polymeric chains present in the clusters 1-3

The presence of $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interaction between H 7 a and O 7 with the bond length $2.684 \AA$ gives rise to the 1D polymeric chain (see Fig. S14). ${ }^{1}$ The H3 $\cdots \mathrm{O} 2$ interactions with bond length 2.711 Å give rise to the 2D polymeric chain (see Fig. S22). This also looks like inverted nest facing towards each other, if observed from 'tilted c' axis. The presence of C-H...C interaction along with $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ between $\mathrm{C} 11 \cdots \mathrm{H} 17$ i.e. C 11 from carbonyl and H 17 from pyridine ring gives rise to the 3D polymeric chain (see Fig. S23). The bond length is $2.779 \AA$.


Fig. S14. 1D polymeric chain of complex 1
The presence of C-H $\cdots \mathrm{O}$ interaction between H 2 and O 10 with the bond length $2.513 \AA$ gives rise to the 1D polymeric chain (see Fig. S15). The C1‥O4 interactions with bond length $3.194 \AA$ give rise to the 2D polymeric chain (see Fig. S24). This also looks like an inverted nest but more packed and one layer faces in the same direction and other in another direction if seen from tilted 'c' axis. The presence of C-H...O interaction between H14A‥O10 gives rise to the 3D polymeric chain (see Fig. S25). ${ }^{2}$ The bond length is $2.700 \AA$.


Fig. S15. 1D polymeric chain of complex 2
The presence of $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interaction between $\mathrm{H} 6 \mathrm{~A} \cdots \mathrm{O} 10$ and $\mathrm{H} 11 \cdots \mathrm{O} 5$ with the bond length $2.572 \AA$ and $2.618 \AA$, respectively gives rise to the 1 D polymeric chain (see Fig. S16). The H4A‥O11 is hydrogen bond interactions with bond length $2.035 \AA$ and H4A...O11 C-H...O interaction with bond length $2.414 \AA$ if seen along 'b' axis give rise to 2D polymeric chain (see Fig. S26). Along with other interactions, the presence of $\pi \cdots \pi$ interaction between C8 $\cdots \mathrm{C} 3$ and C9...C2 give rise to the 3D polymeric chain (see Fig. S27) and the bond length is $3.389 \AA$ and $3.386 \AA$, respectively.


Fig. S16. 1D polymeric chain of complex 3

## Salient features and comparison of the structure 1-3

The molecule $\mathrm{Ru}_{3}(\mathrm{CO})_{12}$ has essentially $D_{3 h}$ symmetry with a mean $\mathrm{Ru}-\mathrm{Ru}$ bond length of $2 \cdot 848 \AA .{ }^{12}$ In the complexes, $\mathbf{1 - 3}$, the bond distance stretched and length was more than $2.848 \AA$. The bond length is $3.078,3.030$ and $3.045 \AA$, respectively. Complex 2 has a seven-membered stable ring which involves C13-C16, O2, N2 and Ru2 (see Fig. S17).


Fig. S17. Seven-members ring in complex 2 involving C13-C16, O2, N2 and Ru2
In complex 3, the hydrogen bonding is present between H 2 A and O 4 atoms. The bond length is $2.045 \AA$ (see Fig. S18).


Fig. S18. Hydrogen bonding in 3 between H2A $\cdots \mathrm{O} 4$ with distance $2.035 \AA$

## Symmetry Operators

Table S2. Symmetry operators present in complex 1

| Number | Symm. Op. | Description | Detailed Description | Order | Type |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | $\mathrm{x}, \mathrm{y}, \mathrm{z}$ | Identity | Identity | 1 | 1 |
| 2 | $1 / 2-$ <br> $\mathrm{x}, 1 / 2+\mathrm{y}, 1 / 2$ <br> -z | Screw axis <br> $(2$-fold) | 2-fold screw axis with direction [0, 1, 0] <br> at $1 / 4, \mathrm{y}, 1 / 4$ with screw component $[0$, <br> $1 / 2,0]$ | 2 | 2 |
| 3 | $-\mathrm{x,-y,-z}$ | Inversion <br> centre | Inversion at [0, 0, 0] | 2 | -1 |
| 4 | $1 / 2+\mathrm{x}, 1 / 2-$ <br> $\mathrm{y}, 1 / 2+\mathrm{z}$ | Glide plane | Glide plane perpendicular to [0, 1, 0] <br> with glide component [1/2, 0, 1/2] | 2 | -2 |

Table S3. Symmetry operators present in complex 2

| Number | Symm. Op. | Description | Detailed Description | Order | Type |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | $\mathrm{x}, \mathrm{y}, \mathrm{z}$ | Identity | Identity | 1 | 1 |
| 2 | $-\mathrm{x},-\mathrm{y},-\mathrm{z}$ | Inversion centre | Inversion at $[0,0,0]$ | 2 | -1 |

Table S4. Symmetry operators present in complex 3

| Number | Symm. Op. | Description | Detailed Description | Order | Type |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | $\mathrm{x}, \mathrm{y}, \mathrm{z}$ | Identity | Identity | 1 | 1 |
| 2 | $1 / 2-\mathrm{x}$, <br> $1 / 2+\mathrm{y}$, <br> $1 / 2-\mathrm{z}$ | Screw axis <br> (2-fold) | 2-fold screw axis with direction [0, 1, 0] <br> at $1 / 4, \mathrm{y}, 1 / 4$ with screw component [0, <br> $1 / 2,0]$ | 2 | 2 |
| 3 | $-\mathrm{x},-\mathrm{y},-\mathrm{z}$ | Inversion <br> centre | Inversion at [0,0,0] | 2 | -1 |
| 4 | $1 / 2+\mathrm{x}$, <br> $1 / 2-\mathrm{y}$, <br> $1 / 2+\mathrm{z}$ | Glide plane | Glide plane perpendicular to [0, 1,0$]$ <br> with glide component $[1 / 2,0,1 / 2]$ | 2 | -2 |



Fig. S19. Symmetry operators present in 1


Fig. S20. Symmetry operators present in 2


Fig. S21. Symmetry operators present in 3


Fig. S22. 2D network of 1along tilted c-axis


Fig. S23. 3D network of 1 along b-axis


Fig. S24. 2D network of 2 along c-axis


Fig. S25. 3D network of 2 along tilted a-axis


Fig. S26. 2D network of 3 along b-axis


Fig. S27. 3D network of 3 along tilted a-axis


Fig. S28. GCMS of table 3, entry no. 3 (chromatogram and mass peaks)


Fig. S29. GCMS of table 3, entry no. 4 (chromatogram and mass peaks)


Fig. S30. GCMS of table 3, entry no. 5 (chromatogram and mass peaks)


Fig. S31. GCMS of table 3, entry no. 6 (chromatogram and mass peaks)


Fig. S32. GCMS of table 3, entry no. 7 (chromatogram and mass peaks)


Fig. S33. GCMS of table 3, entry no. 8 (chromatogram and mass peaks)


Fig. S34. GCMS of table 3, entry no. 9 (chromatogram and mass peaks)


Fig. S35. GCMS of table 4, entry no. 2 (chromatogram and mass peaks)


Fig. S36. GCMS of table 4, entry no. 3 (chromatogram and mass peaks)


Fig. S37. GCMS of table 4, entry no. 4 (chromatogram and mass peaks)


Fig. S38. GCMS of table 4, entry no. 5 (chromatogram and mass peaks)


Fig. S39. GCMS of table 4, entry no. 6 (chromatogram and mass peaks)


Fig. S40. GCMS of table 4, entry no. 7 (chromatogram and mass peaks)


Fig. S41. GCMS of table 4, entry no. 8 (chromatogram and mass peaks)


Fig. S42. GCMS of table 4, entry no. 11 (chromatogram and mass peaks)



Fig. S43. GCMS of table 4, entry no. 12 (chromatogram and mass peaks)


Fig. S44. GCMS of table 4, entry no. 13 (chromatogram and mass peaks)


Fig. S45. GCMS of table 4, entry no. 14 (chromatogram and mass peaks)


Fig. S46. GCMS of table 4, entry no. 15 (chromatogram and mass peaks)


Fig. S47. GCMS of table 4, entry no. 16 (chromatogram and mass peaks)


Fig. S48. GCMS of table 4, entry no. 17 (chromatogram and mass peaks)



Fig. S49. GCMS of table 4, entry no. 18 (chromatogram and mass peaks)


Fig. S50. GCMS of table 4, entry no. 19 (chromatogram and mass peaks)


Fig. S51. GCMS of table 4, entry no. 20 (chromatogram and mass peaks)


Fig. S52. GCMS of table 5, entry no. 1 (chromatogram and mass peaks)


Fig. S53. GCMS of table 5, entry no. 2 (chromatogram and mass peaks)


Fig. S54. GCMS of table 5, entry no. 3 (chromatogram and mass peaks)


Fig. S55. GCMS of table 5, entry no. 4 (chromatogram and mass peaks)



Fig. S56. GCMS of table 5, entry no. 5 (chromatogram and mass peaks)


Fig. S57. GCMS of table 5, entry no. 6 (chromatogram and mass peaks)


Fig. S58. GCMS of table 5, entry no. 7 (chromatogram and mass peaks)



Fig. S59. GCMS of table 5, entry no. 8 (chromatogram and mass peaks)

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=8.56(\mathrm{t}, 1 \mathrm{H}), 7.65(\mathrm{t}, 1 \mathrm{H}), 7.37-7.27(\mathrm{~m}, 7 \mathrm{H}), 3.95(\mathrm{~s}$, 2H), 3.86 ( $\mathrm{s}, 2 \mathrm{H}$ )

Fig. S60. ${ }^{1} \mathrm{H}$ NMR of N-benzyl-1-(pyridin-2-yl)methanamine (Table 6, entry 1)

54.3, 53.5, 29.3

Fig. S61. ${ }^{13} \mathrm{C}$ NMR of N-benzyl-1-(pyridin-2-yl)methanamine (Table 4, entry 1)

${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta(\mathrm{ppm})=7.39-7.31(\mathrm{~m}, 5 \mathrm{H}), 7.10(\mathrm{~s}, 2 \mathrm{H}), 6.69-6.65(\mathrm{dt}, 2 \mathrm{H})$, 4.39 (s, 2H), 2.35 (s, 3H)

Fig. S62. ${ }^{1} \mathrm{H}$ NMR of o-toluidine (Table 4, entry 4)


Fig. S63. ${ }^{13}$ C NMR of o-toluidine (Table 4, entry 4)

${ }^{1} \mathrm{H}^{\mathrm{H}} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=7.28-7.19(\mathrm{~m}, 5 \mathrm{H}), 6.92(\mathrm{~d}, 2 \mathrm{H}), 6.50(\mathrm{~d}, 2 \mathrm{H}), 4.23(\mathrm{~s}$, 2H), 2.165 (s, 3H)

Fig. S64. ${ }^{1} \mathrm{H}$ NMR of p-toluidine (Table 4, entry 7)


Fig. S65. ${ }^{13}$ C NMR of p-toluidine (Table 4, entry 7)

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=8.12(\mathrm{~d}, 2 \mathrm{H}), 7.32(\mathrm{q}, 4 \mathrm{H}), 6.47(\mathrm{~d}, 2 \mathrm{H}), 5.23(\mathrm{~s}, 1 \mathrm{H})$, 4.36 (s, 2H)

Fig. S66. ${ }^{1} \mathrm{H}$ NMR of N -(pyridin-2-ylmethyl)pyridin-4-amine (Table 4, entry 11)


Fig. S67. ${ }^{13} \mathrm{C}$ NMR of N -(pyridin-2-ylmethyl)pyridin-4-amine (Table 4, entry 11)

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=7.32(\mathrm{~m}, 4 \mathrm{H}), 5.83(\mathrm{~s}, 2 \mathrm{H}), 4.23(\mathrm{~s}, 2 \mathrm{H}), 3.71(\mathrm{~d}, 9 \mathrm{H})$

Fig. S68. ${ }^{1} \mathrm{H}$ NMR of N-benzyl-2,4,6-trimethoxyaniline (Table 4, entry 20)

${ }^{13} \mathrm{C}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=154.0,144.7,139.2,130.5,128.75,127.76,127.5,90.9$, 161.2, 55.9, 49.2

Fig. S69. ${ }^{13} \mathrm{C}$ NMR of N-benzyl-2,4,6-trimethoxyaniline (Table 4, entry 20)


Fig. S70. ${ }^{1} \mathrm{H}$ NMR of bis(pyridin-2-ylmethyl)amine (Table 5, entry 1)


Fig. S71. ${ }^{13} \mathrm{C}$ NMR of bis(pyridin-2-ylmethyl)amine (Table 5, entry 1)


${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=8.48(\mathrm{~d}, 1 \mathrm{H}), 7.55(\mathrm{~d}, 1 \mathrm{H}), 7.20-7.12(4 \mathrm{H}), 3.87(\mathrm{~d}, 2 \mathrm{H})$, 3.75 (d, 2H), 2.81 (m, 1H), 1.17-1.15 (m, 6H)

Fig. S72. ${ }^{1} \mathrm{H}$ NMR of N -(4-isopropylbenzyl)-1-(pyridin-2-yl)methanamine (Table 5, entry 5)

${ }^{13} \mathrm{C}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=159.4,149.4,147.9,136.6,128.5,126.6,122.5,122.1$, 54.3, 53.1, 33.9, 24.1

Fig. S73. ${ }^{13}$ C NMR of N-(4-isopropylbenzyl)-1-(pyridin-2-yl)methanamine (Table 5, entry 5)


Fig. S74. Mercury Poisoning experiment of the standard reaction between benzyl alcohol and picolylamine

## X-ray Crystallography

Data were collected at 293 K using graphite-monochromated $\mathrm{Mo} \mathrm{K} \alpha$ ( $\lambda_{\alpha}=0.71073 \AA$ ). The data collection strategy was interpreted by employing the CrysAlisPro CCD software. The collection of data was done by the standard phi-omega scan techniques. The data were scaled and reduced employing CrysAlisPro RED. The direct methods using SHELXS-97 was used to solve the crystal structures and refined by the full matrix least squares method with SHELXL-97, refining on $\mathrm{F}^{2} .{ }^{3}$ Olex- 1.2 software was also used for structure solutions. ${ }^{4}$ The H -atoms were placed at geometrically constrained positions and refined using isotropic temperature factors, generally $1.2 \times U_{e q}$ of their parent atoms. All remaining non-hydrogen atoms were refined anisotropically. All the $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions, ${ }^{5}$ molecular drawings, ${ }^{6}$ and mean plane analyses were obtained by Diamond (ver. 3.1d) ${ }^{7}$ and Mercury (ver. 3.1) ${ }^{8}$.


Fig. S75. Perspective view of 1a

Table S5 Crystal data and structure refinement for 1a

| Identification code | 1a |
| :---: | :---: |
| Empirical formula | $\mathrm{C}_{36} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{10} \mathrm{Ru}_{3}$ |
| Formula weight | 955.84 |
| Temperature/K | 293 |
| Crystal system | monoclinic |
| Space group | $\mathrm{I}_{2} / \mathrm{a}$ |
| a/ $\AA$ | 18.6183(4) |
| b/Å | 11.77089(19) |
| c/Å | 17.3349(2) |
| $\alpha /{ }^{\circ}$ | 90 |
| $\beta /{ }^{\circ}$ | 107.9232(17) |
| $\gamma{ }^{\circ}$ | 90 |
| Volume/ $\mathbf{A}^{3}$ | 3614.65(11) |
| Z | 4 |
| $\rho_{\text {calc }} \mathbf{M g} / \mathrm{m}^{3}$ | 1.756 |
| $\mu / \mathrm{mm}^{-1}$ | 1.297 |
| F(000) | 1896 |
| Crystal size/mm ${ }^{3}$ | $0.31 \times 0.3 \times 0.29$ |
| Radiation | Mo K $\alpha(\lambda=0.71073)$ |
| $2 \Theta$ range for data collection/ ${ }^{\circ}$ | 2.944 to 32.347 |
| Index ranges | $\begin{aligned} & -23 \leq \mathrm{h} \leq 26,-16 \leq \mathrm{k} \leq 16, \\ & -24 \leq 1 \leq 25 \end{aligned}$ |
| Reflections collected | 12688 |
| Refinement method | Full-matrix least-squares on $\mathrm{F}^{2}$ |
| Independent reflections | $\begin{array}{r} 5279\left[\mathrm{R}_{\text {int }}=0.0219,\right. \\ \left.\mathrm{R}_{\text {sigma }}=0.0226\right] \end{array}$ |
| Data/restraints/parameters | 5279/0/232 |
| Goodness-of-fit on $\mathrm{F}^{2}$ | 1.052 |
| Final R indexes [I>=2 $\sigma$ (I)] | $\mathrm{R} 1=0.0255, \mathrm{wR} 2=0.0650$ |
| Final R indexes [all data] | $\mathrm{R} 1=0.0268, \mathrm{wR} 2=0.0661$ |
| Largest diff. peak/hole / e $\AA^{-3}$ | 0.939/-1.421 |
| CCDC No. | 1539165 |

## References

1. A. K. Saini, K. Natarajan and S. M. Mobin, Chem. Commun., 2017, 53, 9870-9873.
2. A. Chaudhary, A. Mohammad and S. M. Mobin, Cryst. Growth Des., 2017, 17, 28932910.
3. G. M. Sheldrick, Acta Crystallogr., Sect. C: Struct. Chem., 2015, 71, 3-8.
4. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, J. Appl. Crystallogr., 2009, 42, 339-341.
5. Y. V. Torubaev, K. A. Lyssenko, P. Y. Barzilovich, G. A. Saratov, M. M. Shaikh, A. Singh and P. Mathur, CrystEngComm, 2017, 19, 5114-5121.
6. A. Singh, P. Kumari, A. Raghuvanshi, S. M. Mobin and P. Mathur, Appl. Organomet. Chem, 2018, 32, DOI: 10.1002/aoc. 4071.
7. K. B. G. H. Putz., Kreuzherrenstr. 102, 53227 Bonn, Germany, and http://www.crystalimpact.com/diamond.
8. C. F. Macrae, P. R. Edgington, P. McCabe, E. Pidcock, G. P. Shields, R. Taylor, M. Towler and J. v. d. Streek, J. Appl. Cryst., , 2006, 39, 453-457.
