Supporting Information for

Developing a magnetic metal organic framework of copper bearing a mixed azido/butane-1,4-dicarboxylate bridge: Magnetic and gas adsorption properties

Azam Hassanpoor, [†] Masoud Mirzaei, ^{*, †}Mahdi Niknam Shahrak, [‡]and Anna Majcher[§]

[†]Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran; E-mail: <u>mirzaeesh@um.ac.ir</u>

[‡]Department of Chemical Engineering, Quchan University of Technology, Quchan 9477167335, I.R. IRAN

[§] Department of Advanced Materials Engineering, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków, POLAND

Atom	Atom	Length/Å
Cul	01	1.9587(11)
Cul	O1 ¹	1.9587(11)
Cul	N1	2.0154(11)
Cul	$N1^1$	2.0154(11)
Cul	O2	2.4443(13)
01	C1	1.2634(15)
N1	N2	1.211(3)

Table S1. Selected bond len	engths [Å] and an	gles [°] for MFUM-1(Cu).
-----------------------------	-------------------	--------------------------

Atom	Atom	Length/Å
N2	N3	1.139(3)
C1	C2	1.514(3)
C2	C3	1.534(3)
C3	C3 ²	1.523(4)

¹1/2-x,3/2-y,2-z; ²1-x,2-y,1-z

Atom	Atom	Atom	Angle/°
01	Cu1	O1 ¹	180.0
O1 ¹	Cu1	N1	90.45(6)
01	Cul	$N1^1$	90.45(6)
01	Cul	N1	89.55(6)
O1 ¹	Cul	$N1^1$	89.55(6)
O1 ¹	Cul	O2	91.54(5)
01	Cul	O2	88.46(5)
N1	Cul	$N1^1$	180.0
$N1^1$	Cul	O2	81.02(5)
N1	Cul	O2	98.98(5)
C1	01	Cu1	131.60(12)
Cul	N1	Cu1 ²	106.90(8)
N2	N1	Cu1 ²	120.76(7)
N2	N1	Cu1	120.76(7)
N3	N2	N1	178.7(2)
O1 ³	C1	01	125.9(2)
01	C1	C2	117.05(10)
O1 ³	C1	C2	117.04(10)
C1	C2	C3	109.59(19)
C3 ⁴	C3	C2	111.1(2)

¹1/2-x,3/2-y,2-z; ²1/2-x,-1/2+y,2-z; ³+x,2-y,+z; ⁴1-x,2-y,1-z

Figure S1. Crystal packing of **MFUM-1(Cu)**showing the 2D layer formed by *bis*(bidentate) but-1,4-dc ligandalong the *ab*-plane.

Figure S2. Abundance of reported coordination compounds containing EO and EE-bridging azido ligand with various metal centres.

Figure S3. Abundance of complexes containing bridging azido with various co-ligands: L1 = neutral N donor, $L2 = NO_{OH}$, L3 = alcoholic, L4 = monocarboxylate, and L5 = dicarboxylate ligands.

Figure S4. Powder X-ray diffraction patterns for samples A (a) and B (b), and predicted powder pattern of **MFUM-1(Cu)** based upon the crystal structure (s).

Figure S5. SEM images of samples A and B synthesized using ultrasonic method for various solvents (A) pure water and (B) H₂O/EtOH.

Figure S6. Powder X-ray diffraction patterns for samples A (a), D (d) and E (e), and predicted powder pattern of **MFUM-1(Cu)** based upon the crystal structure (s).

Figure S7. SEM images of samples A, D, and E synthesized using ultrasonic method in various concentration of initial precursor; $[L^{2-}] = (A) \ 0.005 \ M$, (D) 0.025 M, (E) and 0.050 M.

Figure S8. Powder X-ray diffraction patterns for samples A (a), F (f) and G (g), and predicted powder pattern of **MFUM-1(Cu)** based upon the crystal structure (s).

Figure S9. SEM images of samples A, F, and G synthesized using ultrasonic method for various reaction times: (A) 40, (F) 20, and (G1, G2) 60 min.

Figure S10. Thermal behavior of MFUM-1(Cu) as bulk and nano-sheets.

Figure S11. CO₂ Adsorption capacity of **MFUM-1(Cu)** in comparison with some MOFs at 298K and 1 bar.

Scheme S1. Coordination modes of azido bridged ligand.