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1. Derivation of the analytical expressions for the geff/gtrue relationships in the case of the non-collinearity be-

tween the g- and rank-2 ZFS tensors for the spin quantum number S = 3/2 and 5/2: The exact analytical 

expressions and genuine Zeeman perturbation based analytical formulas.   

 
Figure S1. Energy diagram of the spin states, denoted by MS, based on both the exact solution and the genuine 

Zeeman perturbation approaches for the non-collinear case with the static magnetic field B parallel to the principal 

z-axis of the ZFS tensor.  
 

 
2. Analyses of the X-band fine-structure/hyperfine structure ESR spectra of complexes 1–3 revisited  

 

(a) [Mn(TpivPP)X] (complex 1, X = 1-MeIm; complex 2, X = 2-MeHIm) 

 
Table S1. The experimental g-values of complexes 1 and 2, as revisited and reanalyzed in this work in terms of the 

fictitious spin-1/2 and full spin Hamiltonian approaches to their X-band ESR spectra: The microwave frequency of 

9.45 (three significant digits) GHz was taken from the reported paper. 

 

Figure S2. The simulated X-band (9.45 GHz) ESR spectra of [MnII(TpivPP)(1-MeIm)] (complex 1) in powder at 90 

K based on both the fictitious spin-1/2 Hamiltonian and the true spin Hamiltonian which includes the rank-2 ZFS 

tensor. 

 

Figure S3. (a) The energy diagrams of complex 1 for the principal axis orientations as a function of the magnitude 

of the static magnetic field and (b) the angular dependence of the resonance fields for complex 1 from the principal 

z- to y-axis, based on the true spin Hamiltonian approach. 

 
Figure S4. The simulated X-band (9.45 GHz) ESR spectra of [MnII(TpivPP)(2-MeHIm)] (complex 2) in powder at 

90 K based on both the fictitious spin-1/2 Hamiltonian and true spin Hamiltonian including the rank-2 ZFS tensor. 
 

Figure S5 (a) The energy diagrams of complex 2 for the principal axis orientations as a function of the magnitude of 

the static magnetic field and (b) the angular dependence of the resonance fields for complex 2 from the principal z- 

to y-axis, based on the full spin Hamiltonian approach. 

 

Table S2. The experimental principal values and E/D of the experimental magnetic tensors of manganese complexes 

1 and 2, as determined in terms of the full spin Hamiltonian approach. 

 

Table S3. The theoretical principal values and E/D of the magnetic tensors of manganese complexes 1 and 2, as 

obtained by the quantum chemical calculations on the basis of the NOB-PK method at the UBP86/Sapporo-DZP, 3-

21g level. 
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Figure S6. (a) The theoretical X-band (9.45 GHz) ESR spectrum of 1 in powder at 90 K based on the full spin 

Hamiltonian which includes the rank-2 ZFS tensor. (b) The angular dependence of the ESR spectra in only the three 

principal axis planes for clarity. 

 
Figure S7. (a) The theoretical X-band (9.45 GHz) ESR spectrum of 2 in powder at 90 K based on the full spin 

Hamiltonian which includes the rank-2 ZFS tensor. The spin Hamiltonian parameters are based on the theoretical 

ones, and the magnetic tensors are assumed to be collinear. (b) The angular dependence of the ESR spectra in only 

the three principal axis planes for clarity. 

 

Figure S8. The ratio of geff/gtrue as a function of E/D for the |Ms = 1/2>-dominant transition, as calculated by using 

the exact solution of the rank-2 ZFS + Zeeman interaction Hamiltonian for hν/D = 9.45 GHz/20 GHz = 0.47 with S 

= 5/2 in the case of the collinearity between the g- and ZFS tensors. 

 

 

(b) [FeTPP(4-PyNO)]BF4, 3･BF4: Complex 3 

 

Table S4. The theoretical principal values and E/D of the magnetic tensors of complex 3+, as obtained by the quantum 

chemical calculations on the basis of the NOB-PK method at the UBP86/Sapporo-DZP, 3-21g level. 

 

Table S5. Comparison of the DSO tensor contribution between the NOB-PK and PK methods for complexes 1–3.   

 

Analysis of the SQUID Data of complex 3 revisited. 
 

Figure S9. The calculated temperature dependence of the effective magnetic moments (μeff) for (a) the solution and 

(b) micro-crystalline samples of 3･BF4.  

 
Figure S10. The simulated spectrum of complex 3+ based on the reported fictitious spin-1/2 magnetic tensors and 

the simulated one based on the ZFS + electronic Zeeman interaction Hamiltonian approach. 

 
Figure S11. The simulated spectrum of complex 3+ based on the reported fictitious spin-1/2 magnetic tensors and 

the simulated one based on the theoretical magnetic tensor. 

 
Figure S12. The energy diagrams calculated for 3+ (S = 5/2) in the case of the static magnetic field parallel to (a) the 

principal x-axis and (b) the principal y-axis (X-band). 

 

Figure S13. The simulated Q-band ESR spectrum of complex 3 based on the reported magnetic tensors and the 

theoretical magnetic tensors. 

 

Figure S14. The energy diagrams calculated for 3+, (S = 5/2) in the case of the static magnetic field parallel to (a) 

the principal x-axis and (b) the principal y-axis (Q-band). 

 

Figure S15. The simulated angular dependence of ESR spectra of 3+ by using of the calculated magnetic parameters. 

 

Figure S16. The simulated W-band ESR spectrum of 3+ based on the reported magnetic tensors and the theoretical 

magnetic tensors. 

 
Figure S17. The energy diagrams of 3+ calculated with the static magnetic field oriented parallel to the principal 

axes. 

 

Figure S18. The simulated angular dependence of ESR spectra of 3+ by using of the calculated magnetic parameters. 
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(c) cis-[CoII(hfac)2(H2O)2], complex 4 

 

Figure S19. The ESR spectra of complex 4 obtained from the fictitious spin-1/2 and full spin Hamiltonians with (a) 

E/D = (a) 0.05, (b) 0.1, (c) 0.15, (d) 0.2 (e) 0.25 and (f) 0.3. 

 

Table S6. The sets of spin Hamiltonian parameters obtained from the spectral simulation. The g-values are given as 

optimized as a function of E/D. 

 

Figure S20. The plot of geff/gtrue shown in Table S6. 

 
Figure S21. The simulated (a) magnetization curve and (b) magnetic susceptibility of complex 4. 

 

Non-collinear case 

 

Figure S22. The simulated randomly-oriented (powder-patter) ESR spectra of 4 magnetically diluted in diamagnetic 

cis-[Zn(hfac)2(H2O)2]. 

 

Figure S23. The relationships of the geff and gtrue-values, as calculated in terms of the exact eigen-energy/-value 

approach in the non-collinear case. 
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1. Derivation of the analytical expressions for the geff/gtrue relationships in the case of the non-collinearity be-

tween the g- and rank-2 ZFS tensors for the spin quantum number S = 3/2 and 5/2: The exact analytical 

expressions and genuine Zeeman perturbation based analytical formulas.  

 

In this work, we have given the analytical expressions below for only S = 3/2 and 5/2, and the generalization to the 

non-collinear cases, as presented here, are extended to higher spin multiplicities, particularly by invoking the genuine 

Zeeman perturbation treatment.    

The principal axis coordinate system (x, y, z) is taken as that of the rank-2 ZFS tensor. Introducing the direction 

cosines, cos 𝜃𝑖𝑗′′𝑠 , which define the relative orientation of the non-collinear g-tensor with respect to the ZFS D-

tensor. θij’ (i = x, y, z; j’ = x’, y’, z’) is an angle between the i-axis of the D-tensor and the j’-axis of the g’-tensor. 

Thus, a transformation matrix U is given as 

 

𝑈 = (

cos𝜃𝑥𝑥′ cos𝜃𝑥𝑦′ cos𝜃𝑥𝑧′
cos𝜃𝑦𝑥′ cos𝜃𝑦𝑦′ cos𝜃𝑦𝑧′
cos𝜃𝑧𝑥′ cos𝜃𝑧𝑦′ cos𝜃𝑧𝑧′

) 

 

The g’-tensor is given in its original principal coordinate axis system (x’, y’, z’) as 

 

𝐠′ = (

𝑔𝑥′ 0 0
0 𝑔𝑦′ 0

0 0 𝑔𝑧′

) 

 

The matrix U transforms g’ into g in terms of the principal coordinate axis system (x, y, z) as 

 

𝐠 = 𝑈𝐠′𝑈T = (

cos𝜃𝑥𝑥′ cos 𝜃𝑥𝑦′ cos𝜃𝑥𝑧′
cos𝜃𝑦𝑥′ cos𝜃𝑦𝑦′ cos𝜃𝑦𝑧′
cos𝜃𝑧𝑥′ cos 𝜃𝑧𝑦′ cos𝜃𝑧𝑧′

)(

𝑔𝑥′ 0 0
0 𝑔𝑦′ 0

0 0 𝑔𝑧′

)(

cos𝜃𝑥𝑥′ cos𝜃𝑦𝑥′ cos𝜃𝑧𝑥′
cos 𝜃𝑥𝑦′ cos𝜃𝑦𝑦′ cos𝜃𝑧𝑦′
cos𝜃𝑥𝑧′ cos𝜃𝑦𝑧′ cos𝜃𝑧𝑧′

) 

 

where UT denotes the transposed matrix of U. The rank-2 ZFS and electronic Zeeman interaction Hamiltonian is 

given in the principal axis coordinate system as 

 

𝐻 = 𝐒 ∙ 𝐃 ∙ 𝐒 + 𝛽𝑺 ∙ 𝐠 ∙ 𝑩 

When the static magnetic field is oriented along the z-axis, i.e., with 𝑩 = (
0
0
𝐵
) , H is given as 

𝐻 = 𝐷 [𝑆𝑧
2 −

1

3
𝑆(𝑆 + 1)] + 𝐸(𝑆𝑥

2 − 𝑆𝑦
2) + (𝑆𝑥𝑔𝑥𝑧′ + 𝑆𝑦𝑔𝑦𝑧′ + 𝑆𝑧𝑔𝑧𝑧′)𝛽𝐵 

 
where gij’ denotes the ij’ component of the g-tensor in terms of the principal axis coordinate system (x, y, z), defined 

as 

 

𝑔𝑥𝑧′ = 𝑔′𝑥𝑧 = 𝑔𝑥′ cos𝜃𝑥𝑥′ cos𝜃𝑧𝑥′ + 𝑔𝑦′ cos𝜃𝑥𝑦′ cos𝜃𝑧𝑦′ + 𝑔𝑧′ cos 𝜃𝑥𝑧′ cos𝜃𝑧𝑧′ 

𝑔𝑦𝑧′ = 𝑔′𝑦𝑧 = 𝑔𝑥′ cos𝜃𝑦𝑥′ cos𝜃𝑧𝑥′ + 𝑔𝑦′ cos𝜃𝑦𝑦′ cos𝜃𝑧𝑦′ + 𝑔𝑧′ cos 𝜃𝑦𝑧′ cos𝜃𝑧𝑧′ 

𝑔𝑧𝑧′ = 𝑔′𝑧𝑧 = 𝑔𝑥′ cos
2 𝜃𝑧𝑥′ + 𝑔𝑦′ cos

2 𝜃𝑧𝑦′ + 𝑔𝑧′ cos
2 𝜃𝑧𝑧′ 

 

Since there is no confusion as to the definition of the principal axis coordinates, we introduce 𝑔′𝑖𝑗 instead of 𝑔𝑖𝑗′ for 

simplicity. Throughout the derivation below, the prime of  𝑔′𝑖𝑗 is kept so as to represent the non-collinearity of the 

g-tensor. 

 

1.1 Spin-quartet state (S = 3/2) 

 

The matrix representation of the rank-2 ZFS tensor + electronic Zeeman interaction Hamiltonian for S = 3/2 is given 

in the |MS> basis set as 
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(

 
 
 
 
 
 

𝐷 +
3

2
𝑔′𝑧𝑧𝛽𝐵

√3

2
(𝑔′𝑥𝑧 − 𝑖𝑔′𝑦𝑧)𝛽𝐵

√3

2
(𝑔′𝑥𝑧 + 𝑖𝑔′𝑦𝑧)𝛽𝐵 −𝐷 +

1

2
𝑔′𝑧𝑧𝛽𝐵

√3𝐸 0

(𝑔′𝑥𝑧 − 𝑖𝑔′𝑦𝑧)𝛽𝐵 √3𝐸

√3𝐸 (𝑔′𝑥𝑧 + 𝑖𝑔′𝑦𝑧)𝛽𝐵

0 √3𝐸

−𝐷 −
1

2
𝑔′𝑧𝑧𝛽𝐵

√3

2
(𝑔′𝑥𝑧 − 𝑖𝑔′𝑦𝑧)𝛽𝐵

√3

2
(𝑔′𝑥𝑧 + 𝑖𝑔′𝑦𝑧)𝛽𝐵 𝐷 −

3

2
𝑔′𝑧𝑧𝛽𝐵 )

 
 
 
 
 
 

 

 

Note that the symmetry of the conjugate spin eigenfunctions is broken because of the non-collinearity of the g-tensor 

in contrast to the collinear case. Thus, the secular equation becomes quartic as given by 

 

𝑥4 − [2𝐷2 + 6𝐸2 +
5

2
(𝑔′

𝑧𝑧
𝛽𝐵)

2
+
5

2
(𝑔′𝑥𝑧

2
+ 𝑔′

𝑦𝑧
2
) (𝛽𝐵)2] 𝑥2

− [4𝐷(𝑔′
𝑧𝑧
𝛽𝐵)

2
− 2𝐷 (𝑔′𝑥𝑧

2
+ 𝑔′

𝑦𝑧
2
) (𝛽𝐵)2 + 6𝐸 (𝑔′𝑥𝑧

2
+ 𝑔′

𝑦𝑧
2
) (𝛽𝐵)2] 𝑥 + (𝐷2 + 3𝐸2)2

−
5

2
𝐷2(𝑔′

𝑧𝑧
𝛽𝐵)

2
+
9

2
𝐸2(𝑔′

𝑧𝑧
𝛽𝐵)

2
+
1

4
𝐷2 (𝑔′𝑥𝑧

2
+ 𝑔′

𝑦𝑧
2
) (𝛽𝐵)2

+ 6𝐷𝐸 (𝑔′𝑥𝑧
2
+ 𝑔′

𝑦𝑧
2
) (𝛽𝐵)2 −

9

2
𝐸2 (𝑔′𝑥𝑧

2
+ 𝑔′

𝑦𝑧
2
) (𝛽𝐵)2 +

9

8
(𝑔′

𝑧𝑧
𝛽𝐵)

4

+
9

8
(𝑔′

𝑧𝑧
𝛽𝐵)

2
(𝑔′𝑥𝑧

2
+ 𝑔′

𝑦𝑧
2
) (𝛽𝐵)2 +

9

16
(𝑔′𝑥𝑧

2
+ 𝑔′

𝑦𝑧
2
)
4
(𝛽𝐵)4 = 0 

 

where the relevant eigenenergies are real. The exact eigenenergies E can be analytically solved as follows: 

 

 

𝐸 =
1

2
[±1√𝑢0±2√−2𝑝 − 𝑢0∓1

2𝑞

√𝑢0
] (S1) 

𝑢0 = 2𝑎0 cos (
1

3
arccos

𝑏0
2𝑎0

) −
2𝑝

3
 

𝑎0 =
1

3
√𝑝2 + 12𝑟 

𝑏0 =
2𝑝3 − 27𝑞2 + 72𝑝𝑟

3𝑝2 + 36𝑟
 

𝑝 = −2𝐷2 − 6𝐸2 −
5

2
(𝑔′

𝑧𝑧
𝛽𝐵)

2
−
5

2
(𝑔′𝑥𝑧

2
+ 𝑔′

𝑦𝑧
2
) (𝛽𝐵)2 

𝑞 = −4𝐷(𝑔′
𝑧𝑧
𝛽𝐵)

2
+ 2𝐷 (𝑔′𝑥𝑧

2
+ 𝑔′

𝑦𝑧
2
) (𝛽𝐵)2 − 6𝐸 (𝑔′𝑥𝑧

2
+ 𝑔′

𝑦𝑧
2
) (𝛽𝐵)2 

𝑟 = (𝐷2 + 3𝐸2)2 −
5

2
𝐷2(𝑔′

𝑧𝑧
𝛽𝐵)

2
+
9

2
𝐸2(𝑔′

𝑧𝑧
𝛽𝐵)

2
+
1

4
𝐷2 (𝑔′𝑥𝑧

2
+ 𝑔′

𝑦𝑧
2
) (𝛽𝐵)2

+ 6𝐷𝐸 (𝑔′𝑥𝑧
2
+ 𝑔′

𝑦𝑧
2
) (𝛽𝐵)2 −

9

2
𝐸2 (𝑔′𝑥𝑧

2
+ 𝑔′

𝑦𝑧
2
) (𝛽𝐵)2 +

9

8
(𝑔′

𝑧𝑧
𝛽𝐵)

4

+
9

16
(𝑔′

𝑧𝑧
𝛽𝐵)

2
(𝑔′𝑥𝑧

2
+ 𝑔′

𝑦𝑧
2
) (𝛽𝐵)2 +

9

16
(𝑔′𝑥𝑧

2
+ 𝑔′

𝑦𝑧
2
)
4
(𝛽𝐵)4 

 

The corresponding eigenfunctions can also be derived analytically. Thus, the any transition probabilities can be ob-

tained.  The relationships between the geff- and gtrue-values for the transition relevant to the |MS> dominant Kramers 

doublets become complex as expected for the non-collinearity effect due to the contributions from the other principal 

g-values such as gx’ and gy’. Thus, we solve the simultaneous equations associated with the relationships from the 

other principal orientations in order to get the expressions between the geff- and gtrue-tensors. It should be noted that 

the genuine Zeeman perturbation formalism below can afford more facile generalization, as described in the previous 

paper, [1] and useful approach to gain physical insights into the effects caused by the non-collinearity and the sym-

metry reduction of the conjugate spinfunctions caused by the additional Zeeman interaction terms. 

      For the other principal axis orientations such as for B//x, as well known, the cyclic permutation of the subscripts 

for the axes, Dz  Dx, Dx  Dy, Dy  Dz, gives the eigenvalues and functions relevant to the ZFS D-tensor; i.e., for 

the static magnetic field B parallel to the principal x-axis, B//x, the transformation of D  1/2(3E – D) and E  –
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1/2(E + D), and for B//y, D  –1/2(3E + D) and E  1/2(E – D) under the definition of the D- and E-values give the 

expressions associated with the ZFS tensor, respectively. The transformation associated with the D-tensor described 

in terms of the principal axis coordinate system is straightforward because there is no off-diagonal element of the 

tensor. 

For the case of the non-collinearity, the equations above include the off-diagonal elements of the g-tensors, and 

the effects of any change in the principal axis coordinate system on the transformation between two tensors, T and 

T’ should be mentioned. The effects are described in terms of the general properties of the transformation, in which 

the direction cosines (aik’s) defining the relative orientation between the axes of the two tensors. The transformation 

associated with the present cyclic permutation with respect to the three orthogonal coordinate axes involves only 

three non-vanishing aik’s (= 1) for one cyclic permutation, proving that all the diagonal and off-diagonal elements 

can be transformed into the elements governed by the transformation rule, Tij’ =  aik ajl Tkl (k,l = 1,2,3). Thus, for 

the other principal axis orientations the transformation relevant to the g-tensor can be carried out by the cyclic per-

mutation of the subscripts for the x, y and z axis, i.e., for B//x the facile transformation, z  x, x  y, y  z affords 

the corresponding eigen-values/-functions in a straightforward manner. The global invariance of the geff/gtrue relation-

ships with respect to the axis transformations holds for the non-collinear case. This is also true for the formulas 

derived on the genuine Zeeman perturbation treatment for the non-collinearity, described below. 

 

In the genuine Zeeman perturbation treatment for B//z, the Zeeman interaction terms appear in both the diagonal 

and off-diagonal elements, as given below: 

 

(

 
 
 
 
 
 

3

2
𝑔′𝑧𝑧𝛽𝐵

√3

2
(𝑔′𝑥𝑧 − 𝑖𝑔′𝑦𝑧)𝛽𝐵

√3

2
(𝑔′𝑥𝑧 + 𝑖𝑔′𝑦𝑧)𝛽𝐵

1

2
𝑔′𝑧𝑧𝛽𝐵

0 0
(𝑔′𝑥𝑧 − 𝑖𝑔′𝑦𝑧)𝛽𝐵 0

0 (𝑔′𝑥𝑧 + 𝑖𝑔′𝑦𝑧)𝛽𝐵

0 0

−
1

2
𝑔′𝑧𝑧𝛽𝐵

√3

2
(𝑔′𝑥𝑧 − 𝑖𝑔′𝑦𝑧)𝛽𝐵

√3

2
(𝑔′𝑥𝑧 + 𝑖𝑔′𝑦𝑧)𝛽𝐵 −

3

2
𝑔′𝑧𝑧𝛽𝐵 )

 
 
 
 
 
 

 

 

The exact and analytical eigen-values/-functions for the ZFS Hamiltonian are derived in the previous paper [1], as 

the eigenfunctions are given as 

 

|𝜑
±
3
2

(0)⟩ = cos𝛿 |±
3

2
⟩ ± sin 𝛿 |∓

1

2
⟩ 

|𝜑
±
1
2

(0)⟩ = cos𝛿 |±
1

2
⟩ ∓ sin 𝛿 |∓

3

2
⟩ 

 

with tan 2𝛿 = √3𝐸

𝐷
. We describe the perturbing electronic Zeeman Hamiltonian in terms of the ZFS-based eigenfunc-

tions, as follows: 

 

(

 
 

𝐺1𝑧 𝐺3𝑥 − 𝑖𝐺3𝑦
𝐺3𝑥 + 𝑖𝐺3𝑦 𝐺2𝑧

−𝐺3𝑧 𝐺1𝑥 − 𝑖𝐺1𝑦
𝐺2𝑥 − 𝑖𝐺2𝑦 𝐺3𝑧

−𝐺3𝑧 𝐺2𝑥 + 𝑖𝐺2𝑦
𝐺1𝑥 + 𝑖𝐺1𝑦 𝐺3𝑧

−𝐺2𝑧 𝐺4𝑥 − 𝑖𝐺4𝑦
𝐺4𝑥 + 𝑖𝐺4𝑦 −𝐺1𝑧 )

 
 

 

𝐺1𝑧 =
𝑔′𝑧𝑧𝛽𝐵

2
(3 cos2 𝛿 − sin2 𝛿) 

𝐺2𝑧 =
𝑔′𝑧𝑧𝛽𝐵

2
(cos2 𝛿 − 3 sin2 𝛿) 

𝐺3𝑧 = 𝑔′𝑧𝑧𝛽𝐵 sin 2𝛿 

𝐺1𝑥 =
𝑔′
𝑥𝑧
𝛽𝐵

2
(√3 sin 2𝛿 − 2 sin2 𝛿) 

𝐺1𝑦 =
𝑔′𝑦𝑧𝛽𝐵

2
(√3 sin 2𝛿 + 2 sin2 𝛿) 
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𝐺2𝑥 =
𝑔′
𝑥𝑧
𝛽𝐵

2
(2 cos2 𝛿 − √3sin 2𝛿) 

𝐺2𝑦 =
𝑔′𝑦𝑧𝛽𝐵

2
(2 cos2 𝛿 + √3sin 2𝛿) 

𝐺3𝑥 =
𝑔′𝑥𝑧𝛽𝐵

2
(√3 cos2𝛿 + sin 2𝛿) 

𝐺3𝑦 =
𝑔′𝑥𝑧𝛽𝐵

2
(√3 cos2𝛿 − sin 2𝛿) 

𝐺4𝑥 =
𝑔′
𝑥𝑧
𝛽𝐵

2
(√3 cos2 𝛿 + 2 sin 2𝛿) 

𝐺4𝑦 =
𝑔′𝑦𝑧𝛽𝐵

2
(√3 cos2 𝛿 − 2 sin 2𝛿) 

 

Note that the spin states, |𝜑
±
3

2

(0)
⟩ and |𝜑

±
1

2

(0)
⟩ are degenerate, respectively. The relevant submatrices are 

 

(
𝐺1𝑧 𝐺1𝑥 − 𝑖𝐺1𝑦

𝐺1𝑥 + 𝑖𝐺1𝑦 −𝐺1𝑧
)     for |𝜑

±
3

2

(0)
⟩  

and  

(
𝐺2𝑧 𝐺2𝑥 − 𝑖𝐺2𝑦

𝐺2𝑥 + 𝑖𝐺2𝑦 −𝐺2𝑧
)      for |𝜑

±
1

2

(0)⟩.  

 

The corresponding eigen-values/-functions are as follows: 

 

𝐸1± = ±√𝐺1𝑥
2 + 𝐺1𝑦

2 + 𝐺1𝑧
2
 

|𝜑
+
3
2

′ ⟩ = cos𝜓1 |𝜑
+
3
2

(0)⟩ + sin𝜓1 𝑒
𝑖𝜂1 |𝜑

−
3
2

(0)⟩ 

|𝜑
−
3
2

′ ⟩ = sin𝜓1 𝑒
−𝑖𝜂1 |𝜑

+
3
2

(0)⟩ − cos𝜓1 |𝜑
−
3
2

(0)⟩ 

 

𝐸2± = ±√𝐺2𝑥
2 + 𝐺2𝑦

2 + 𝐺2𝑧
2
 

|𝜑
+
1
2

′ ⟩ = cos𝜓2 |𝜑
+
1
2

(0)⟩ + sin𝜓2 𝑒
𝑖𝜂2 |𝜑

−
1
2

(0)⟩ 

|𝜑
−
1
2

′ ⟩ = sin𝜓2 𝑒
−𝑖𝜂2 |𝜑

+
1
2

(0)⟩ − cos𝜓2 |𝜑
−
1
2

(0)⟩ 

 

with 

 

tan𝜓𝑗 =
√𝐺𝑗𝑥

2 + 𝐺𝑗𝑦
2

𝐺𝑗𝑧
 

and 

𝜂𝑗 = arg(𝐺𝑗𝑥 + 𝑖𝐺𝑗𝑦) 

 

(j = 1, 2). Then 

 

(
cos𝜓𝑗 sin𝜓𝑗 𝑒

−𝑖𝜂𝑗

sin𝜓𝑗 𝑒
𝑖𝜂1 −cos𝜓𝑗

)(
𝐺𝑗𝑧 𝐺𝑗𝑥 − 𝑖𝐺𝑗𝑦

𝐺𝑗𝑥 + 𝑖𝐺𝑗𝑦 −𝐺𝑗𝑧
)(

cos𝜓𝑗 sin𝜓𝑗 𝑒
−𝑖𝜂𝑗

sin𝜓𝑗 𝑒
𝑖𝜂1 −cos𝜓𝑗

) 
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= (
𝐺𝑗𝑧 cos 2𝜓𝑗 + (𝐺𝑗𝑥 cos 𝜂𝑗 + 𝐺𝑗𝑦 sin 𝜂𝑗) sin 2𝜓𝑗 𝐺𝑗𝑧 sin2𝜓𝑗 𝑒

−𝑖𝜂𝑗 − (𝐺𝑗𝑥 − 𝑖𝐺𝑗𝑦) cos
2𝜓𝑗 + (𝐺𝑗𝑥 + 𝑖𝐺𝑗𝑦) sin

2𝜓𝑗 𝑒
−2𝑖𝜂𝑗

𝐺𝑗𝑧 sin 2𝜓𝑗 𝑒
𝑖𝜂𝑗 − (𝐺𝑗𝑥 + 𝑖𝐺𝑗𝑦) cos

2𝜓𝑗 + (𝐺𝑗𝑥 − 𝑖𝐺𝑗𝑦) sin
2𝜓𝑗 𝑒

2𝑖𝜂𝑗 −𝐺𝑗𝑧 cos 2𝜓𝑗 − (𝐺𝑗𝑥 cos 𝜂𝑗 + 𝐺𝑗𝑦 sin 𝜂𝑗) sin 2𝜓𝑗
) 

 

=

(

 
√𝐺𝑗𝑥

2 + 𝐺𝑗𝑦
2 + 𝐺𝑗𝑧

2 0

0 −√𝐺𝑗𝑥
2 + 𝐺𝑗𝑦

2 + 𝐺𝑗𝑧
2

)

  

 

The entire transformed Hamiltonian matrix for the electronic Zeeman is described as follows: 

 

𝐻′ = (

𝐻11 𝐻12
𝐻21 𝐻22

𝐻13 0
0 𝐻24

𝐻31 0
0 𝐻42

𝐻33 𝐻34
𝐻43 𝐻44

) 

𝐻11 = √𝐺1𝑥
2 + 𝐺1𝑦

2 + 𝐺1𝑧
2
 

𝐻22 = √𝐺2𝑥
2 + 𝐺2𝑦

2 + 𝐺2𝑧
2
 

𝐻33 = −√𝐺2𝑥
2 + 𝐺2𝑦

2 + 𝐺2𝑧
2
 

𝐻44 = −√𝐺1𝑥
2 + 𝐺1𝑦

2 + 𝐺1𝑧
2
 

 

𝐻12 = (𝐺3𝑥 − 𝑖𝐺3𝑦) cos𝜓1 cos𝜓2 − 𝐺3𝑧 cos𝜓1 sin𝜓2 𝑒
𝑖𝜂2 + 𝐺3𝑧 cos𝜓2 sin𝜓1 𝑒

−𝑖𝜂1

+ (𝐺4𝑥 + 𝑖𝐺4𝑦) sin𝜓1 sin𝜓2 𝑒
−𝑖(𝜂1−𝜂2) 

𝐻21 = 𝐻12
∗ 

𝐻13 = 𝐺3𝑧 cos𝜓1 cos𝜓2 + (𝐺3𝑥 − 𝑖𝐺3𝑦) cos𝜓1 sin𝜓2 𝑒
−𝑖𝜂2 − (𝐺4𝑥 + 𝑖𝐺4𝑦) cos𝜓2 sin𝜓1 𝑒

−𝑖𝜂1

+ 𝐺3𝑧 sin𝜓1 sin𝜓2 𝑒
−𝑖(𝜂1+𝜂2) 

𝐻31 = 𝐻13
∗ 

𝐻24 = −𝐺3𝑧 cos𝜓1 cos𝜓2 − (𝐺4𝑥 − 𝑖𝐺4𝑦) cos𝜓1 sin𝜓2 𝑒
−𝑖𝜂2 + (𝐺3𝑥 + 𝑖𝐺3𝑦) cos𝜓2 sin𝜓1 𝑒

−𝑖𝜂1

− 𝐺3𝑧 sin𝜓1 sin𝜓2 𝑒
−𝑖(𝜂1+𝜂2) 

𝐻42 = 𝐻24
∗ 

𝐻34 = (𝐺4𝑥 − 𝑖𝐺4𝑦) cos𝜓1 cos𝜓2 − 𝐺3𝑧 cos𝜓1 sin𝜓2 𝑒
𝑖𝜂2 + 𝐺3𝑧 cos𝜓2 sin𝜓1 𝑒

−𝑖𝜂1

+ (𝐺3𝑥 + 𝑖𝐺3𝑦) sin𝜓1 sin𝜓2 𝑒
−𝑖(𝜂1−𝜂2) 

𝐻43 = 𝐻34
∗ 

 

For B//z, the eigenenergies to the third order in the genuine Zeeman perturbation treatment for the non-collinearity 

case are given as follows: 

 

𝐸+32
= 𝐷∗ +√𝐺1𝑥

2 + 𝐺1𝑦
2 + 𝐺1𝑧

2 +
|𝐻12|

2 + |𝐻13|
2

2𝐷∗
+
|𝐻12|

2(𝐻22 −𝐻11) + |𝐻13|
2(𝐻33 −𝐻11)

4𝐷∗2
 (S2a) 

𝐸+1
2
= −𝐷∗ +√𝐺2𝑥

2 + 𝐺2𝑦
2 + 𝐺2𝑧

2 −
|𝐻21|

2 + |𝐻24|
2

2𝐷∗
+
|𝐻21|

2(𝐻11 −𝐻22) + |𝐻24|
2(𝐻44 −𝐻22)

4𝐷∗2
 (S2b) 

𝐸−12
= −𝐷∗ −√𝐺2𝑥

2 + 𝐺2𝑦
2 + 𝐺2𝑧

2 −
|𝐻31|

2 + |𝐻34|
2

2𝐷∗
+
|𝐻31|

2(𝐻11 −𝐻33) + |𝐻34|
2(𝐻44 −𝐻33)

4𝐷∗2
 (S2c) 

𝐸−32
= 𝐷∗ −√𝐺1𝑥

2 + 𝐺1𝑦
2 + 𝐺1𝑧

2 +
|𝐻42|

2 + |𝐻43|
2

2𝐷∗
+
|𝐻42|

2(𝐻22 −𝐻44) + |𝐻43|
2(𝐻33 −𝐻44)

4𝐷∗2
 (S2d) 

 

with D* = (D2 + 3E2)1/2.  The eigenfunctions are obtained to the second order, which are not given here. Thus, the 

relationships within the Kramers doublets between the geff- and gtrue-tensors for the non-collinearity for B//z are ana-

lytically derived, indicating that the symmetry reduction due to the non-collinearity requires solving the simultaneous 

higher-order algebraic equations for the relationships. The analytical expressions, as a function of E/D, for the rela-

tionships between the geff- and gtrue-tensors in the case of the non-collinearity can be acquired by considering the 
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energies above at least to the second order under the assumption |E+Ms – E–Ms| = gz
effβB for the Kramers doublets |±MS 

>. 

    For the other principal orientations, all the formulas of the corresponding eigen-energies/-functions can be derived 

by executing the cyclic permutations as described above.  

 

1.2 Spin-sextet state (S = 5/2) 

 

The matrix representation of the rank-2 ZFS tensor + electronic Zeeman interaction Hamiltonian for S = 5/2 is given 

for B//z in the |MS> basis set as  

 

𝐻ZFS+eZ =

(

 
 
 
 

10

3
𝐷+
5

2
𝑔′𝑧𝑧𝛽𝐵

√5

2
(𝑔′𝑥𝑧+𝑖𝑔′𝑦𝑧)𝛽𝐵

√10𝐸
0
0
0

√5

2
(𝑔′𝑥𝑧−𝑖𝑔′𝑦𝑧)𝛽𝐵

−
2

3
𝐷+

3

2
𝑔′𝑧𝑧𝛽𝐵

√2(𝑔′𝑥𝑧+𝑖𝑔′𝑦𝑧)𝛽𝐵

3√2𝐸
0
0

√10𝐸
√2(𝑔′𝑥𝑧−𝑖𝑔′𝑦𝑧)𝛽𝐵

−
8

3
𝐷+
1

2
𝑔′𝑧𝑧𝛽𝐵

3

2
(𝑔′𝑥𝑧+𝑖𝑔′𝑦𝑧)𝛽𝐵

3√2𝐸
0

0

3√2𝐸
3

2
(𝑔′𝑥𝑧−𝑖𝑔′𝑥𝑦)𝛽𝐵

−
8

3
𝐷−

1

2
𝑔′𝑧𝑧𝛽𝐵

√2(𝑔′𝑥𝑧+𝑖𝑔′𝑦𝑧)𝛽𝐵

√10𝐸

0
0

3√2𝐸
√2(𝑔′𝑥𝑧−𝑖𝑔′𝑦𝑧)𝛽𝐵

−
2

3
𝐷−
3

2
𝑔′𝑧𝑧𝛽𝐵

√5

2
(𝑔′𝑥𝑧+𝑖𝑔′𝑦𝑧)

0
0
0

√10𝐸
√5

2
(𝑔′𝑥𝑧−𝑖𝑔′𝑦𝑧)𝛽𝐵

10

3
𝐷−

5

2
𝑔′𝑧𝑧𝛽𝐵 )

 
 
 
 

 

 

where the g- and rank-2 ZFS tensors are assumed to be non-collinear, as the relative orientation between the two 

tensors defined in 1.1. The symmetry reduction due to the non-collinearity cannot provide us with analytical algebraic 

solutions of the eigen-value/-functions for the above Hamiltonian in contrast to the collinear case. The alternative 

approach based on the genuine Zeeman perturbation treatment affords extremely accurate solutions to the spin Ham-

iltonians composed of the rank-2 ZFS tensor + electronic Zeeman interaction terms, [1] and thus we invoke the 

genuine Zeeman perturbation approach to solve the eigen-values/-functions of the above Hamiltonian. The exact and 

analytical solutions for the eigen-values/-functions of the rank-2 ZFS Hamiltonian for S = 5/2 have already been 

derived, and the electronic Zeeman interaction Hamiltonian HeZ in the |Ms> basis set is given as follows: 

 

𝐻eZ =

(

 
 
 
 

5

2
𝑔′𝑧𝑧𝛽𝐵

√5

2
(𝑔′𝑥𝑧+𝑖𝑔′𝑦𝑧)𝛽𝐵

0
0
0
0

√5

2
(𝑔′𝑥𝑧−𝑖𝑔′𝑦𝑧)𝛽𝐵

3

2
𝑔′𝑧𝑧𝛽𝐵

√2(𝑔′𝑥𝑧+𝑖𝑔′𝑦𝑧)𝛽𝐵

0
0
0

0
√2(𝑔′𝑥𝑧−𝑖𝑔′𝑦𝑧)𝛽𝐵

1

2
𝑔′𝑧𝑧𝛽𝐵

3

2
(𝑔′𝑥𝑧+𝑖𝑔′𝑦𝑧)𝛽𝐵

0
0

0
0

3

2
(𝑔′𝑥𝑧−𝑖𝑔′𝑥𝑦)𝛽𝐵

−
1

2
𝑔′𝑧𝑧𝛽𝐵

√2(𝑔′𝑥𝑧+𝑖𝑔′𝑦𝑧)𝛽𝐵

0

0
0
0

√2(𝑔′𝑥𝑧−𝑖𝑔′𝑦𝑧)𝛽𝐵

−
3

2
𝑔′𝑧𝑧𝛽𝐵

√5

2
(𝑔′𝑥𝑧+𝑖𝑔′𝑦𝑧)𝛽𝐵

0
0
0
0

√5

2
(𝑔′𝑥𝑧−𝑖𝑔′𝑦𝑧)𝛽𝐵

−
5

2
𝑔′𝑧𝑧𝛽𝐵 )

 
 
 
 

 

 

The exact spin eigenfunctions for the ZFS Hamiltonian, which are composed of the three pairs of the spin conjugate 

functions, are described as 

 

|𝜑𝑛+
(0)⟩ = 𝛼𝑛 |+

5

2
⟩ + 𝛽𝑛 |−

3

2
⟩ + 𝛾𝑛 |+

1

2
⟩ 

|𝜑𝑛−
(0)⟩ = 𝛼𝑛 |−

5

2
⟩ + 𝛽𝑛 |+

3

2
⟩ + 𝛾𝑛 |−

1

2
⟩ 

 

where n = 0, 2, and 1 denote the |MS = ±5/2>, |±3/2> and |±1/2>-dominant state, respectively, with the definitions of 

the coefficients given below. The corresponding exact eigenenergies 휀𝑛
(0) are given in the trigonometric functions. 

 

𝛼𝑛
𝛾𝑛
=

√10𝐸

휀𝑛
(0) − 10

3
𝐷
,
𝛽𝑛
𝛾𝑛
=

3√2𝐸

휀𝑛
(0) + 2

3
𝐷
, 𝛾𝑛

2 = [
10𝐸2

(휀𝑛
(0) − 10

3
𝐷)

2 +
18𝐸2

(휀𝑛
(0) + 2

3
𝐷)

2 + 1]

−1

 

휀𝑛
(0) = 2𝑎 cos (

1

3
arccos

𝑏

2𝑎
+
2𝑛𝜋

3
) (𝑛 = 0, 1, 2) 

𝑎 =
2√7

3
√𝐷2 + 3𝐸2 

𝑏 =
40𝐷(𝐷2 − 9𝐸2)

21(𝐷2 + 3𝐸2)
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The matrix elements of the new perturbing Hamiltonian matrix Hpert described in the |𝜑𝑛+
(0)⟩ and |𝜑𝑛−

(0)⟩ basis set are 

given as follows. Within {+5/2, –3/2, +1/2}, the matrix elements are given as 

 

⟨𝜑𝑚+
(0)
|𝐻pert|𝜑𝑛+

(0)
⟩ = 𝐺𝑧𝑧,𝑚𝑛 

 

and within {–5/2, +3/2, –1/2}, they are as follows: 

 

⟨𝜑𝑚−
(0) |𝐻pert|𝜑𝑛−

(0)⟩ = −𝐺𝑧𝑧,𝑚𝑛 

 

The matrix elements between the spin conjugate states are given as 

 

⟨𝜑𝑚+
(0) |𝐻pert|𝜑𝑛−

(0)⟩ = 𝐺𝑥𝑧,𝑚𝑛 − 𝑖𝐺𝑦𝑧,𝑚𝑛 

⟨𝜑𝑚+
(0)
|𝐻pert|𝜑𝑛−

(0)
⟩ = 𝐺𝑥𝑧,𝑚𝑛 + 𝑖𝐺𝑦𝑧,𝑚𝑛 

 

with the following definitions: 

 

𝐺𝑧𝑧,𝑚𝑛 =
𝑔′𝑧𝑧𝛽𝐵

2
(5𝛼𝑚𝛼𝑛 − 3𝛽𝑚𝛽𝑛 + 𝛾𝑚𝛾𝑛) 

𝐺𝑥𝑧,𝑚𝑛 =
𝑔′𝑥𝑧𝛽𝐵

2
(√5𝛼𝑚𝛽𝑛 + √5𝛽𝑚𝛼𝑛 + 2√2𝛽𝑚𝛾𝑛 + 2√2𝛾𝑚𝛽𝑛 + 3𝛾𝑚𝛾𝑛) 

𝐺𝑦𝑧,𝑚𝑛 =
𝑔′𝑦𝑧𝛽𝐵

2
(√5𝛼𝑚𝛽𝑛 + √5𝛽𝑚𝛼𝑛 − 2√2𝛽𝑚𝛾𝑛 − 2√2𝛾𝑚𝛽𝑛 + 3𝛾𝑚𝛾𝑛) 

 

Noting that the Kramers doublet states, i.e., the |𝜑
±52

(0)⟩, |𝜑
±32

(0)⟩ and |𝜑
±12

(0)⟩ dominant states are degenerate, respectively, 

we diagonalize the following two by two matrix and lift the degeneracy, 

 

(
𝐺𝑧𝑧,𝑛𝑛 𝐺𝑥𝑧,𝑛𝑛 − 𝑖𝐺𝑦𝑧,𝑛𝑛

𝐺𝑥𝑧,𝑛𝑛 + 𝑖𝐺𝑦𝑧,𝑛𝑛 −𝐺𝑧𝑧,𝑛𝑛
) 

 

where nn is replaced with n for simplicity and n = 0, 2 and 1 stand for the |𝜑
±52

(0)⟩, |𝜑
±32

(0)⟩ and |𝜑
±12

(0)⟩ dominant spin 

state. Similar to the case of S = 3/2, the eigen-energies and -functions are given as 

 

𝐸𝑛± = ±√𝐺𝑥𝑧,𝑛
2 + 𝐺𝑦𝑧,𝑛

2 + 𝐺𝑧𝑧,𝑛
2
 

|𝜑′+𝑀𝑆⟩ = cos𝜓𝑛 |𝜑+𝑀𝑆
(0) ⟩ + sin𝜓𝑛 𝑒

𝑖𝜂𝑛 |𝜑−𝑀𝑆
(0) ⟩ 

|𝜑′−𝑀𝑆⟩ = sin𝜓𝑛 𝑒
−𝑖𝜂𝑛 |𝜑+𝑀𝑆

(0) ⟩ − cos𝜓𝑛 |𝜑−𝑀𝑆
(0) ⟩ 

 

with 

 

tan𝜓𝑛 =
√𝐺𝑥𝑧,𝑛

2 + 𝐺𝑦𝑧,𝑛
2

𝐺𝑧𝑧,𝑛
 

𝜂𝑛 = arg(𝐺𝑥𝑧,𝑛 + 𝑖𝐺𝑦𝑧,𝑛) 
 

and n = 0, 2, 1. The transformed electronic Zeeman interaction Hamiltonian H’ for Rayleigh-Schrödinger perturbation 

treatment is given as 
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𝐻′ =

(

 
 
 
 

𝐻′11
𝐻′21
𝐻′31
𝐻′41
𝐻′51
0

𝐻′12
𝐻′22
𝐻′32
𝐻′42
0
𝐻′62

𝐻′13
𝐻′23
𝐻′33
0
𝐻′53
𝐻′63

𝐻′14
𝐻′24
0
𝐻′44
𝐻′54
𝐻′64

𝐻′15
0
𝐻′35
𝐻′45
𝐻′55
𝐻′65

0
𝐻′26
𝐻′36
𝐻′46
𝐻′56
𝐻′66)

 
 
 
 

 

 

𝐻′11 = √𝐺𝑥𝑧,0
2 + 𝐺𝑦𝑧,0

2 + 𝐺𝑧𝑧,0
2
 

𝐻′22 = √𝐺𝑥𝑧,2
2 + 𝐺𝑦𝑧,2

2 + 𝐺𝑧𝑧,2
2
 

𝐻′33 = √𝐺𝑥𝑧,1
2 + 𝐺𝑦𝑧,1

2 + 𝐺𝑧𝑧,1
2
 

𝐻′44 = −√𝐺𝑥𝑧,1
2 + 𝐺𝑦𝑧,1

2 + 𝐺𝑧𝑧,1
2
 

𝐻′55 = −√𝐺𝑥𝑧,2
2 + 𝐺𝑦𝑧,2

2 + 𝐺𝑧𝑧,2
2
 

𝐻′66 = −√𝐺𝑥𝑧,0
2 + 𝐺𝑦𝑧,0

2 + 𝐺𝑧𝑧,0
2
 

 

𝐻′12 = 𝐺𝑧𝑧,02(cos𝜓0 sin𝜓2 𝑒
𝑖𝜂2 − sin𝜓0 𝑒

𝑖𝜂0 cos𝜓2) + 𝐺𝑥𝑧,02(cos𝜓0 cos𝜓2 + sin𝜓0 sin𝜓2 𝑒
𝑖(𝜂0+𝜂2))

− 𝑖𝐺𝑦𝑧,02(cos𝜓0 cos𝜓2 − sin𝜓0 sin𝜓2 𝑒
𝑖(𝜂0+𝜂2)) 

𝐻′21 = 𝐻′12
∗
 

 

𝐻′13 = 𝐺𝑧𝑧,01(cos𝜓0 cos𝜓1 + sin𝜓0 sin𝜓1 𝑒
𝑖(𝜂0+𝜂1)) + 𝐺𝑥𝑧,01(cos𝜓0 sin𝜓1 𝑒

𝑖𝜂1 + sin𝜓0 𝑒
𝑖𝜂0 cos𝜓1)

− 𝑖𝐺𝑦𝑧,01(cos𝜓0 sin𝜓1 𝑒
𝑖𝜂1 − sin𝜓0 𝑒

𝑖𝜂0 cos𝜓1) 

𝐻′31 = 𝐻′13
∗
 

 

𝐻′14 = 𝐺𝑧𝑧,01(cos𝜓0 sin𝜓1 𝑒
𝑖𝜂1 + sin𝜓0 𝑒

𝑖𝜂0 cos𝜓1) − 𝐺𝑥𝑧,01(cos𝜓0 cos𝜓1 − sin𝜓0 sin𝜓1 𝑒
𝑖(𝜂0−𝜂1))

+ 𝑖𝐺𝑦𝑧,01(cos𝜓0 cos𝜓1 + sin𝜓0 sin𝜓1 𝑒
𝑖(𝜂0−𝜂1)) 

𝐻′41 = 𝐻′14
∗
 

 

𝐻′15 = 𝐺𝑧𝑧,02(cos𝜓0 cos𝜓2 − sin𝜓0 sin𝜓2 𝑒
𝑖(𝜂0−𝜂2)) + 𝐺𝑥𝑧,02(cos𝜓0 sin𝜓2 𝑒

−𝑖𝜂2 − sin𝜓0 𝑒
𝑖𝜂0 cos𝜓2)

− 𝑖𝐺𝑦𝑧,02(cos𝜓0 sin𝜓2 𝑒
−𝑖𝜂2 + sin𝜓0 𝑒

𝑖𝜂0 cos𝜓2) 

𝐻′51 = 𝐻′15
∗
 

 

𝐻′23 = −𝐺𝑧𝑧,21(cos𝜓2 sin𝜓1 𝑒
𝑖𝜂1 − sin𝜓2 𝑒

𝑖𝜂2 cos𝜓1) + 𝐺𝑥𝑧,21(cos𝜓2 cos𝜓1 + sin𝜓2 sin𝜓1 𝑒
𝑖(𝜂2+𝜂1))

+ 𝑖𝐺𝑦𝑧,21(cos𝜓2 cos𝜓1 − sin𝜓2 sin𝜓1 𝑒
𝑖(𝜂2+𝜂1)) 

𝐻′32 = 𝐻′23
∗
 

 

𝐻′24 = 𝐺𝑧𝑧,21(cos𝜓2 cos𝜓1 + sin𝜓2 sin𝜓1 𝑒
−𝑖(𝜂1−𝜂2)) + 𝐺𝑥𝑧,21(cos𝜓2 sin𝜓1 𝑒

−𝑖𝜂1 − sin𝜓2 𝑒
𝑖𝜂2 cos𝜓1)

+ 𝑖𝐺𝑦𝑧,21(cos𝜓2 sin𝜓1 𝑒
−𝑖𝜂1 + sin𝜓2 𝑒

𝑖𝜂2 cos𝜓1) 

𝐻′42 = 𝐻′24
∗
 

 

𝐻′26 = 𝐺𝑧𝑧,20(cos𝜓2 cos𝜓0 + sin𝜓2 sin𝜓0 𝑒
𝑖(𝜂2−𝜂0)) + 𝐺𝑥𝑧,20(cos𝜓2 sin𝜓0 𝑒

−𝑖𝜂0 − sin𝜓2 𝑒
𝑖𝜂2 cos𝜓0)

+ 𝑖𝐺𝑦𝑧,20(cos𝜓2 sin𝜓0 𝑒
−𝑖𝜂0 + sin𝜓2 𝑒

𝑖𝜂2 cos𝜓0) 

𝐻′62 = 𝐻′26
∗
 

 

𝐻′35 = −𝐺𝑧𝑧,12(cos𝜓1 cos𝜓2 + sin𝜓1 sin𝜓2 𝑒
𝑖(𝜂1−𝜂2)) + 𝐺𝑥𝑧,12(cos𝜓1 sin𝜓2 𝑒

−𝑖𝜂2 − sin𝜓1 𝑒
𝑖𝜂1 cos𝜓2)

+ 𝑖𝐺𝑦𝑧,12(cos𝜓1 sin𝜓2 𝑒
−𝑖𝜂2 + sin𝜓1 𝑒

𝑖𝜂1 cos𝜓2) 

𝐻′53 = 𝐻′35
∗
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𝐻′36 = 𝐺𝑧𝑧,10(cos𝜓1 sin𝜓0 𝑒
−𝑖𝜂0 + sin𝜓1 𝑒

𝑖𝜂1 cos𝜓0) − 𝐺𝑥𝑧,10(cos𝜓1 cos𝜓0 − sin𝜓1 sin𝜓0 𝑒
𝑖(𝜂1−𝜂0))

+ 𝑖𝐺𝑦𝑧,10(cos𝜓1 cos𝜓0 + sin𝜓1 sin𝜓0 𝑒
𝑖(𝜂1−𝜂0)) 

𝐻′63 = 𝐻′36
∗
 

 

𝐻′45 = 𝐺𝑧𝑧,12(cos𝜓1 sin𝜓2 𝑒
−𝑖𝜂2 − sin𝜓1 𝑒

𝑖𝜂1 cos𝜓2) + 𝐺𝑥𝑧,12(cos𝜓1 cos𝜓2 − sin𝜓1 sin𝜓2 𝑒
𝑖(𝜂1−𝜂2))

+ 𝑖𝐺𝑦𝑧,12(cos𝜓1 cos𝜓2 + sin𝜓1 sin𝜓2 𝑒
𝑖(𝜂1−𝜂2)) 

𝐻′54 = 𝐻′45
∗
 

 

𝐻′46 = −𝐺𝑧𝑧,10(cos𝜓1 cos𝜓0 − sin𝜓1 sin𝜓0 𝑒
−𝑖(𝜂1+𝜂2)) − 𝐺𝑥𝑧,10(cos𝜓1 sin𝜓0 𝑒

−𝑖𝜂0 − cos𝜓0 sin𝜓1 𝑒
−𝑖𝜂1)

− 𝑖𝐺𝑦𝑧,10(cos𝜓1 sin𝜓0 𝑒
−𝑖𝜂0 + cos𝜓0 sin𝜓1 𝑒

−𝑖𝜂1) 

𝐻′64 = 𝐻′46
∗
 

 

𝐻′56 = −𝐺𝑧𝑧,20(cos𝜓2 sin𝜓0 𝑒
−𝑖𝜂0 − sin𝜓2 𝑒

−𝑖𝜂2 cos𝜓0) + 𝐺𝑥𝑧,20(cos𝜓2 cos𝜓0 + sin𝜓2 sin𝜓0 𝑒
−𝑖(𝜂2+𝜂0))

− 𝑖𝐺𝑦𝑧,20(cos𝜓2 cos𝜓0 − sin𝜓2 sin𝜓0 𝑒
−𝑖(𝜂2+𝜂0)) 

𝐻′65 = 𝐻′56
∗
 

 

The eigenenergies of the |MS> dominant states to the third order are derived as follows, where only the energies are 

explicitly described below and the eigenfunctions given to the second order: 

 
𝐸+52

= 휀0
(0) +√𝐺𝑥𝑧,0

2 + 𝐺𝑦𝑧,0
2 + 𝐺𝑧𝑧,0

2 +
|𝐻′12|

2 + |𝐻′15|
2

휀0
(0) − 휀2

(0)
+
|𝐻′13|

2 + |𝐻′14|
2

휀0
(0) − 휀1

(0)
+
|𝐻′12|

2(𝐻′22 −𝐻′11) + |𝐻′15|
2(𝐻′55 − 𝐻′11)

(휀0
(0) − 휀2

(0))2

+
𝐻′12𝐻′23𝐻′31 +𝐻′12𝐻′24𝐻′41 + 𝐻′13𝐻′32𝐻′21 + 𝐻′13𝐻′35𝐻′51 +𝐻′14𝐻′42𝐻′21 + 𝐻′14𝐻′45𝐻′51 + 𝐻′15𝐻′53𝐻′31 +𝐻′15𝐻′54𝐻′41

(휀0
(0) − 휀2

(0))(휀0
(0) − 휀1

(0))

+
|𝐻′13|

2(𝐻′33 − 𝐻′11) + |𝐻′14|
2(𝐻′44 −𝐻′11)

(휀0
(0) − 휀1

(0))2
 

 

𝐸+32

= 휀2
(0) +√𝐺𝑥𝑧,2

2 + 𝐺𝑦𝑧,2
2 + 𝐺𝑧𝑧,2

2 +
|𝐻′21|

2 + |𝐻′26|
2

휀2
(0) − 휀0

(0)
+
|𝐻′23|

2 + |𝐻′24|
2

휀2
(0) − 휀1

(0)
+
|𝐻′21|

2(𝐻′11 −𝐻′22) + |𝐻′26|
2(𝐻′66 − 𝐻′22)

(휀2
(0) − 휀0

(0))2

+
𝐻′21𝐻′13𝐻′32 +𝐻′21𝐻′14𝐻′42 + 𝐻′23𝐻′31𝐻′12 + 𝐻′23𝐻′36𝐻′62 + 𝐻′24𝐻′41𝐻′12 +𝐻′24𝐻′46𝐻′62 + 𝐻′26𝐻′63𝐻′32 + 𝐻′26𝐻′64𝐻′42

(휀2
(0) − 휀0

(0))(휀2
(0) − 휀1

(0))

+
|𝐻′23|

2(𝐻′33 −𝐻′22) + |𝐻′24|
2(𝐻′44 − 𝐻′22)

(휀2
(0) − 휀1

(0))2
 

 

𝐸+12

= 휀1
(0) +√𝐺𝑥𝑧,1

2 + 𝐺𝑦𝑧,1
2 + 𝐺𝑧𝑧,1

2 +
|𝐻′31|

2 + |𝐻′36|
2

휀1
(0) − 휀0

(0)
+
|𝐻′32|

2 + |𝐻′35|
2

휀1
(0) − 휀2

(0)
+
|𝐻′31|

2(𝐻′11 − 𝐻′33) + |𝐻′36|
2(𝐻′66 −𝐻′33)

(휀1
(0) − 휀0

(0))2

+
𝐻′31𝐻′12𝐻′23 +𝐻′31𝐻′15𝐻′53 + 𝐻′32𝐻′21𝐻′13 + 𝐻′32𝐻′26𝐻′63 + 𝐻′35𝐻′51𝐻′13 +𝐻′35𝐻′56𝐻′63 + 𝐻′36𝐻′62𝐻′23 + 𝐻′36𝐻′65𝐻′53

(휀1
(0) − 휀0

(0))(휀1
(0) − 휀2

(0))

+
|𝐻′32|

2(𝐻′22 −𝐻′33) + |𝐻′35|
2(𝐻′55 − 𝐻′33)

(휀1
(0) − 휀2

(0))2
 

 

𝐸−12

= 휀1
(0) −√𝐺𝑥𝑧,1

2 + 𝐺𝑦𝑧,1
2 + 𝐺𝑧𝑧,1

2 +
|𝐻′41|

2 + |𝐻′46|
2

휀1
(0) − 휀0

(0)
+
|𝐻′42|

2 + |𝐻′45|
2

휀1
(0) − 휀2

(0)
+
|𝐻′41|

2(𝐻′11 − 𝐻′44) + |𝐻′46|
2(𝐻′66 −𝐻′44)

(휀1
(0) − 휀0

(0))2

+
𝐻′41𝐻′12𝐻′24 +𝐻′41𝐻′15𝐻′54 + 𝐻′42𝐻′21𝐻′14 + 𝐻′42𝐻′26𝐻′63 + 𝐻′45𝐻′51𝐻′14 +𝐻′45𝐻′56𝐻′64 + 𝐻′46𝐻′62𝐻′24 + 𝐻′46𝐻′65𝐻′54

(휀1
(0) − 휀0

(0))(휀1
(0) − 휀2

(0))

+
|𝐻′42|

2(𝐻′22 −𝐻′44) + |𝐻′45|
2(𝐻′55 − 𝐻′44)

(휀1
(0) − 휀0

(0))2
 

 

𝐸−32

= 휀2
(0) −√𝐺𝑥𝑧,2

2 + 𝐺𝑦𝑧,2
2 + 𝐺𝑧𝑧,2

2 +
|𝐻′51|

2 + |𝐻′56|
2

휀2
(0) − 휀0

(0)
+
|𝐻′53|

2 + |𝐻′54|
2

휀2
(0) − 휀1

(0)
+
|𝐻′51|

2(𝐻′11 −𝐻′55) + |𝐻′56|
2(𝐻′66 − 𝐻′55)

(휀2
(0) − 휀0

(0))2

+
𝐻′51𝐻′13𝐻′35 +𝐻′51𝐻′14𝐻′45 + 𝐻′53𝐻′31𝐻′15 + 𝐻′53𝐻′36𝐻′65 + 𝐻′54𝐻′41𝐻′15 +𝐻′54𝐻′46𝐻′65 + 𝐻′56𝐻′63𝐻′35 + 𝐻′56𝐻′64𝐻′45

(휀2
(0) − 휀0

(0))(휀2
(0) − 휀1

(0))

+
|𝐻′53|

2(𝐻′33 −𝐻′55) + |𝐻′54|
2(𝐻′44 − 𝐻′55)

(휀1
(0) − 휀0

(0))2
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𝐸−5
2

= 휀0
(0) −√𝐺𝑥𝑧,0

2 + 𝐺𝑦𝑧,0
2 + 𝐺𝑧𝑧,0

2 +
|𝐻′62|

2 + |𝐻′65|
2

휀0
(0) − 휀2

(0)
+
|𝐻′63|

2 + |𝐻′64|
2

휀0
(0) − 휀1

(0)
+
|𝐻′62|

2(𝐻′22 − 𝐻′66) + |𝐻′65|
2(𝐻′55 −𝐻′66)

(휀0
(0) − 휀2

(0))2

+
𝐻′62𝐻′23𝐻′36 + 𝐻′62𝐻′24𝐻′46 + 𝐻′63𝐻′32𝐻′26 + 𝐻′63𝐻′35𝐻′56 +𝐻′64𝐻′42𝐻′26 +𝐻′64𝐻′45𝐻′56 +𝐻′65𝐻′53𝐻′36 + 𝐻′65𝐻′54𝐻′46

(휀0
(0) − 휀2

(0))(휀0
(0) − 휀1

(0))

+
|𝐻′63|

2(𝐻′33 −𝐻′66) + |𝐻′64|
2(𝐻′44 − 𝐻′66)

(휀0
(0) − 휀1

(0))2
 

 

The analytical expressions, as a function of E/D, for the relationships between the geff- and gtrue-tensors in the case of 

the non-collinearity can be acquired by considering the energies above at least to the second order. The procedure to 

derive the relationships is the same as described for S = 3/2.  

For the other principal orientations, all the formulas of the corresponding eigen-energies/-functions can be derived 

by executing the cyclic permutations as described for the case of S = 3/2.  
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Model calculation for S = 3/2 

 

 
Fig. S1. Energy diagram of the spin states, denoted by MS, based on both the exact solution (Eq. (S1), solid lines) 

and the genuine Zeeman perturbation approaches (up to the second-order terms in Eqs. (S2a)–(S2d), broken lines) 

for the non-collinear case with the static magnetic field B parallel to the principal z-axis of the ZFS tensor.  

The set of Euler angles of the g-tensor with respect to the ZFS tensor were α = 0º, β = 90º and γ = 138º. The diagonal 

elements of the original principal coordinate g’-tensor were gx’ = 2.8, gy’ = 2.46 and gz’ = 2.8. The ZFS parameter D 

was set to positive and E/D = 0.1. 

  

|MS = +3/2>-dominant 

|MS = –3/2>-dominant 

|MS = +1/2>-dominant 

|MS = –1/2>-dominant 
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2. Analyses of X-band fine-structure/hyperfine structure ESR spectra of complexes 1–3 revisited 

 

(a) [MnII(TpivPP)X] (complex 1, X = 1-MeIm; complex 2, X = 2-MeHIm) 

 

Table S1. The experimental g-values of complexes 1 and 2, as revisited and reanalyzed in this work in terms of the 

fictitious spin-1/2 and full spin Hamiltonian approaches for their X-band ESR spectra: The microwave frequency of 

9.45 GHz was taken from the reported paper. 

Sample geff-values gtrue-values 

1, powder 5.9 ± 0.1 5.9 ± 0.1 1.93 1.24 0.774 0.543 2.18 2.14 1.93 

2, powder 5.8 ± 0.1 5.8 ± 0.1 2.0 1.22 0.765 0.530 2.15 2.17 2.0 

2, solution 5.9 ± 0.1 5.9 ± 0.1 1.96 1.23 0.770 0.540 2.19 2.12 1.96 

 Principal x- 

canonical 

peak 

Principal y- 

canonical 

peak 

Principal z-

canonical 

peak 

Principal 

x- and y-

canonical 

and off-

axis extra 

peak  

Off-axis 

extra 

peak  

Off-axis 

extra 

peak 

Principal x- 

canonical 

peak 

Principal 

y-canoni-

cal peak 

Principal 

z-canoni-

cal peak 

 

 

Fig. S2. The simulated X-band (9.45 GHz) ESR spectra of [MnII(TpivPP)(1-MeIm)] (complex 1) in powder at 90 K 

based on both the fictitious spin-1/2 Hamiltonian and the full spin Hamiltonian which includes the rank-2 ZFS tensor. 

The microwave frequency of 9.45 GHz and temperature of 90 K were taken from the reported paper. [2] The fictitious 

spin-1/2 Hamiltonian parameters: The spectrum in blue; Seff = 1/2, g1,x
eff = 5.9, g1,y

eff = 5.9, g1,z
eff = 1.93, A1,x

eff(55Mn) 

= 810 MHz, A1,y
eff(55Mn) = 660 MHz and A1,z

eff(55Mn) = 150 MHz. The full spin Hamiltonian parameters: The spec-

trum in red; S = 5/2, gx = 2.18, gy = 2.14, gz = 1.93, Ax(55Mn) = 300 MHz, Ay(55Mn) = 295 MHz, Az(55Mn) = 150 MHz, 

D = 20.6 GHz and E/D = 0.002 with the peak-to-peak linewidth of the single transition = 14 mT.  No strain effect on 

the linewidth was included. All the magnetic tensors were assumed to be collinear. The spectral simulations were 

obtained by using EasySpin (ver. 5.1.12). [3] 

  

× 2 × 4 × 10 
× 8 
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Fig. S3. (a) The energy diagrams of complex 1 for the principal axis orientations as a function of the magnitude of 

the static magnetic field and (b) the angular dependence of the resonance fields for complex 1 from the principal z- 

to y-axis, based on the full spin Hamiltonian approach. The spin Hamiltonian parameters used for the simulations: S 

= 5/2, gx = 2.18, gy = 2.14, gz = 1.93, Ax(55Mn) = 300 MHz, Ay(55Mn) = 295 MHz, Az(55Mn) = 150 MHz, D = 20.6 

GHz and E/D = 0.002. The simulations were obtained by using EasySpin (ver. 5.1.12) [3] with varying the angle of 

the magnetic field one-degree stepwise. Note that the yz-plane angular dependence is chosen only for clarity, which 

reveals the clear appearance of the off-principal axis extra peaks. For the complete spectral simulation, all the orien-

tations of the static magnetic field were considered to assign the peaks in the powder-pattern ESR spectra.  (b) Colors 

denote the transition intensities. 

 

 

Fig. S4. The simulated X-band (9.45 GHz) ESR spectra of [MnII(TpivPP)(2-MeHIm)] (complex 2) in powder at 90 

K based on both the fictitious spin-1/2 Hamiltonian and full spin Hamiltonian including the rank-2 ZFS tensor. The 

microwave frequency of 9.45 GHz and temperature of 90 K were taken from the reported paper. [2] The fictitious 

spin-1/2 Hamiltonian parameters: The spectrum in blue; Seff = 1/2, g1,x
eff = 5.8, g1,y

eff = 5.8, g1,z
eff = 2.0, A1,x

eff(55Mn) 

= 750 MHz, A1,y
eff(55Mn) = 660 MHz and A1,z

eff(55Mn) = 270 MHz. The full spin Hamiltonian parameters: The spec-

trum in red; S = 5/2, gx = 2.15, gy = 2.07, gz = 2.00, Ax(55Mn) = 280 MHz, Ay(55Mn) = 235 MHz cm–1, Az(55Mn) = 270 

MHz, D = 21.5 GHz and E/D = 0.005 with the peak-to-peak linewidth for the single transition = 15 mT. No strain 

effect on the linewidth was included. All the magnetic tensors were assumed to be collinear. The simulated spectra 

were obtained using EasySpin (ver. 5.1.12). [3] 

 

× 4 × 10 
× 15 

× 10 

B//y 

B//z 

B//z 

(b) B//y 

 

(a) B//x 



 

 

17 

 

 

Fig. S5 (a) The energy diagrams of complex 2 for the principal axis orientations as a function of the magnitude of 

the static magnetic field and (b) the angular dependence of the resonance fields for complex 2 from the principal z- 

to y-axis, based on the full spin Hamiltonian approach. The spin Hamiltonian parameters used for the simulations. S 

= 5/2, gx = 2.15, gy = 2.07, gz = 2.00, Ax(55Mn) = 280 MHz, Ay(55Mn) = 235 MHz cm–1, Az(55Mn) = 270 MHz, D = 

21.5 GHz, E/D = 0.005. The simulations were obtained by using EasySpin (ver. 5.1.12) [3] with varying the angle of 

the magnetic field one-degree stepwise. Note that the yz-plane angular dependence is chosen only for clarity, which 

reveals the clear appearance of the off-principal axis extra peaks. For the complete spectral simulation, all the orien-

tations of the static magnetic field were considered to assign the peaks in the powder-pattern ESR spectra. 

 

Table S2. The experimental principal values and E/D of the experimental magnetic tensors of manganese complexes 

1 and 2, as determined in terms of the full spin Hamiltonian approach. The values are to be compared with the 

theoretical ones based on quantum chemical calculations.  

 1, powder 2, powder 2, glass solution 

gx 2.18 2.15 2.19 

gy 2.14 2.07 2.12 

gz 1.93 2.00 1.96 

Ax(55Mn)/MHz 300 280 280 

Ay(55Mn)/MHz 295 235 270 

Az(55Mn)/MHz 150 270 240 

D/cm–1 +0.69 +0.72 +0.70 

|E/D| 0.002 0.005 0.004 
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Table S3. The theoretical principal values and E/D of the magnetic tensors of manganese complexes 1 and 2, as 

obtained by the quantum chemical calculations on the basis of the NOB-PK method at the UBP86/Sapporo-DZP, 3-

21g level. The definitions of the principal axes are given in the text. Importantly, the theoretical D-values are pre-

dicted to be positive. The theoretical hyperfine principal values of 55Mn(II) are underestimated, and the ratios of the 

theoretical E/D values are overestimated, indicating that more rectified theoretical treatments of the magnetic tensors 

are required. 

 1 2 

gxx 1.9921 2.0029 

gyy 2.0050 1.9997 

gzz 2.0018 2.0042 

Axx(55Mn)/MHz +109.72 +109.68 

Ayy(55Mn)/MHz +109.03 +109.29 

Azz(55Mn)/MHz +102.24 +102.79 

DSS+SO/cm–1 +0.5578 +0.4933 

ESS+SO/cm–1 –0.0298 –0.0868 

|ESS+SO/DSS+SO| 0.1663 0.1760 

 

 

 

Fig. S6. (a) The theoretical X-band (9.45 GHz) ESR spectrum of 1 in powder at 90 K based on the full spin Hamil-

tonian which includes the rank-2 ZFS tensor. The spin Hamiltonian parameters are based on the theoretical ones, and 

the magnetic tensors are assumed to be collinear. (b) The angular dependence of the ESR spectra in only the three 

principal axis planes for clarity. The powder-pattern ESR spectra in (a) are obtained from the complete random ori-

entations of the static magnetic field with the perpendicular microwave excitation. The principal values of theoretical 

magnetic parameters: gxx = 1.9921, gyy = 2.0050, gzz = 2.0018, Axx(55Mn) = 109.72 MHz, Ayy(55Mn) = 109.03 MHz, 

Azz(55Mn) = 102.24 MHz, DSS+SO = +0.5578 cm–1, ESS+SO = –0.0298 cm–1. The peak-to-peak linewidth for the single 

transition: 10 mT for (a) and 1 mT for (b). Colors denote the transition intensities. 

 

(a) 

× 5 

(b) B//y 

 

B//x 

B//x 

B//y 

B//z B//z 



 

 

19 

 

 

Fig. S7. (a) The theoretical X-band (9.45 GHz) ESR spectrum of 2 in powder at 90 K based on the full spin Hamil-

tonian which includes the rank-2 ZFS tensor. The spin Hamiltonian parameters are based on the theoretical ones, and 

the magnetic tensors are assumed to be collinear. (b) The angular dependence of the ESR spectra in only the three 

principal axis planes for clarity. The powder-pattern ESR spectra in (a) are obtained from the complete random ori-

entations of the static magnetic field with the perpendicular microwave excitation. The principal values of theoretical 

magnetic parameters: gxx = 2.0029, gyy = 1.9997, gzz = 2.0042, Axx(55Mn) = 109.68 MHz, Ayy(55Mn) = 109.29 MHz, 

Azz(55Mn) = 102.79 MHz, DSS+SO = +0.4933 cm–1, ESS+SO = –0.0868 cm–1. The peak-to-peak linewidth of 5 mT for 

(a) and 1 mT for (b). Colors denote the transition intensities. 

 

 

Fig. S8. The ratio of geff/gtrue as a function of E/D for the |Ms = 1/2>-dominant transition, as calculated by using the 

exact solution of the rank-2 ZFS + Zeeman interaction Hamiltonian for hν/D = 9.45 GHz/20 GHz = 0.47 with S = 

5/2 in the case of the collinearity between the g- and ZFS tensors (h denotes Planck constant and ν the microwave 

frequency). The geff/gtrue values at E/D = 0.005 are given for the x- and y-canonical orientations. [1] 
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(b) [FeTPP(4-PyNO)]BF4, 3･BF4: Complex 3 

 

Table S4. The theoretical principal values and E/D of the magnetic tensors of complex 3+, as obtained by the quantum 

chemical calculations on the basis of the NOB-PK method at the UBP86/Sapporo-DZP, 3-21g level. The definition 

of the principal axes is given in the text. Importantly, the theoretical D-values are predicted to be positive. The ratios 

of the theoretical E/D values are overestimated, indicating that more rectified theoretical treatments of the magnetic 

tensors are required. 

 3+ 

gxx 2.0099 

gyy 2.0095 

gzz 2.0092 

DSS+SO/cm–1 +3.1241 

ESS+SO/cm–1 –0.0830 

|ESS+SO/DSS+SO| 0.0266 

 

Table S5. Comparison of the DSO tensor contribution between the NOB-PK and PK Methods for complexes 1–3. 

Molecule NOB-PK-UBP86/Sapporo-DZP, 3-21g PK-UBP86/Sapporo-DZP 

DSO/cm–1 * ESO/cm–1 DSO/cm–1 ESO/cm–1 

1 +0.5640 –0.0911 +2.0029a –0.5086 

2 +0.5005 –0.0854 –0.9074b –0.0172 

3+ +3.1056 –0.0801 +13.9192 +0.5111 

*The DSO(NOB-PK)ZZ axis was perpendicular to the porphyrin plane. 

aThe DSO(PK)ZZ axis was nearly along the direction bisecting the angle between the DSO(NOB-PK)XX and DSO(NOB-PK)YY axes. 

bThe DSO(PK)ZZ axis was nearly parallel to the DSO(NOB-PK)XX axis. 

Note that the DSO-values obtained by the PK method are apart from the experimental ones (0.68 cm–1 for complex 1 

(1-MeIm) and 0.67 cm–1 for complex 2 (2-MeHIm). The DSO-value of complex 3+ by the PK method is overestimated. 

On the other hand, the DSO-values calculated by the NOB-PK method reasonably agree with the experimental ones. 
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Analysis of the SQUID Data of complex 3 revisited 

 

 

 

Fig. S9. The calculated temperature dependence of the effective magnetic moments (μeff) for (a) the solution and (b) 

micro-crystalline samples of 3･BF4. The ZFS + Zeeman interaction Hamiltonian was used with the true principal g-

values converted from the fictitious spin-1/2 g-values (g⊥eff = 5.94, g||
eff = 1.99 for (a) and g⊥eff = 5.62, g||

eff = 1.98 for 

(b), respectively) by using of Eq. (4) in the text and the counterparts for the principal x- and y-axes. The D-value was 

estimated by reproducing the shape of the curves in the low temperature region. The dotted lines indicate the exper-

imental values of the paramagnetic component at 300 K: D = 300 GHz with E/D in the range of 0 to 0.05. The detailed 

experimental data and procedure of the analysis were not given in the reported paper.  

 

X-band (9.7 GHz) 

 

Fig. S10. The simulated spectrum of complex 3 based on the reported fictitious spin-1/2 magnetic tensors (blue) and 

the simulated one based on the ZFS + electronic Zeeman interaction Hamiltonian approach (red). The microwave 

frequency used was 9.7 GHz, the peak-to-peak line width for the single transition was 4.0 mT. The principal values 

of the magnetic tensors: g⊥eff = 5.94, g||
eff = 1.99 for the blue spectrum and gtrue = [1.996 1.965 1.99], D = +10 cm–1 

and E/D = 0.001 for the red one. The g- and D-tensors were collinear. Any strain effect of the tensor and the linewidth 

was not included. The simulated spectra were obtained by using EasySpin (ver. 5.1.12). [3] 
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Fig. S11. The simulated spectrum of complex 3 based on the reported fictitious spin-1/2 magnetic tensors (blue) and 

the simulated one based on the theoretical magnetic tensors (red). The microwave frequency used was 9.7 GHz, and 

the peak-to-peak linewidth was 2.0 mT. The principal values of the magnetic tensors were g⊥eff = 5.9, g||
eff = 2.0 for 

the blue spectrum and gtrue = [2.0099, 2.0095, 2.0092], D = +3.1241 cm–1 and E = –0.0830 cm–1 for the red spectrum. 

The red spectrum obviously shows that theory overestimates the asymmetry parameter 3E/D. The g- and D-tensors 

were collinear. Any strain effect of the tensor and the linewidth was not included. The simulated spectra were obtained 

by using EasySpin (ver. 5.1.12). [3] 

 

 

Fig. S12. The energy diagrams calculated for 3+, (S = 5/2) in the case of the static magnetic field parallel to (a) the 

principal x-axis and (b) the principal y-axis (X-band). Magnetic tensors: gtrue = [1.996, 1.965, 1.99], D = 300 GHz 

and E/D = 0.001. The g- and D-tensor were collinear. Microwave frequency used: 9.7 GHz. The diagrams were 

obtained using EasySpin (ver. 5.1.12). [3] The calculated resonance fields are 116 mT and 2943 mT for B//x and 117 

mT and 3205 mT for B//y. 
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Q-band (33 GHz) 

 

Fig. S13. The simulated Q-band ESR spectrum of complex 3+ based on the reported magnetic tensors (spectrum in 

blue) and the theoretical magnetic tensors (spectrum in red). The microwave frequency used was 33 GHz, and the 

peak-to-peak linewidth was 10.0 mT. The principal values of the magnetic tensors were g⊥eff = 5.9, g||
eff = 2.0 for the 

blue spectrum and gtrue = [2.0099, 2.0095, 2.0092], D = +3.1241 cm–1 and E = –0.0830 cm–1 for the red spectrum.  

The g- and D-tensors were collinear. Any strain effect of the tensor and the linewidth was not included. The simulated 

spectra were obtained by using EasySpin (ver. 5.1.12). [3] The vertical dotted lines denote the resonance positions of 

the principal axis canonical and off-principal axis extra peaks. 

 

 

x-axis: 356.3 mT, 2770 mT, 7800 mT 

y-axis: 442.0 mT, 1888 mT, 6808 mT 

z-axis: 392.8 mT, 1190 mT, 5471 mT, 6266 mT, 7051 mT, 7843 mT, 12140 mT, 14490 mT 

off-axis: 2788 mT, 4078 mT, 5190 mT, 5931 mT, 6810 mT, 7179 mT, 7468 mT, 9391 mT, 10660 mT 

 

Fig. S14. The energy diagrams calculated for 3+, (S = 5/2) in the case of the static magnetic field parallel to (a) the 

principal x-axis and (b) the principal y-axis (Q-band). Magnetic tensors: gtrue = [2.0099, 2.0095, 2.0092], D = +3.1241 

cm–1 and E = –0.0830 cm–1. The g- and D-tensor were collinear. Microwave frequency used: 33 GHz. The diagrams 

were obtained using EasySpin (ver. 5.1.12). [3] 
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Fig. S15. The simulated angular dependence of ESR spectra of 3+ by using of the calculated magnetic parameters: 

gtrue = [2.0099, 2.0095, 2.0092], D = +3.1241 cm–1 and E = –0.0830 cm–1 with a peak-to-peak linewidth of 1 mT for. 

Microwave frequency used: 33 GHz. The simulated spectra were obtained using EasySpin (ver. 5.1.12) [3] with 

varying the angle of the magnetic field one-degree stepwise. 

 

W-band (95 GHz) 

 

Fig. S16. The simulated W-band ESR spectrum of 3+ based on the reported magnetic tensors and the theoretical 

magnetic tensors. The microwave frequency used was 95 GHz, and the peak-to-peak line width was 10.0 mT. The 

principal values of the magnetic tensors were gtrue = [2.0099, 2.0095, 2.0092], D = +3.1241 cm–1 and E = –0.0830 

cm–1 for the red one. The g- ad D-tensors are collinear. Any strain effect of the tensor and the linewidth was not 

included. The simulated spectra were obtained by using EasySpin (ver. 5.1.12). [3] The vertical dotted lines denote 

the resonance positions of the principal axis canonical and off-principal axis extra peaks. 
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x-axis:1071 mT, 4270 mT, 10710 mT 

y-axis: 1353 mT, 3578 mT, 9763 mT 

z-axis: 1131 mT, 5500 mT 7788 mT, 16700 mT 

off-axis: 5090 mT, 5420 mT, 7140 mT, 7870 mT. 8150 mT, 8220 mT, 8300 mT 8360 mT 8700 mT, 11790 mT, 12000 mT 

Fig. S17. The energy diagrams of 3+ calculated with the static magnetic field oriented parallel to the principal axes. The 

theoretical magnetic tensors used: gtrue = [2.0099, 2.0095, 2.0092], D = +3.1241 cm–1 and E = –0.0830 cm–1. Microwave 

frequency: 95 GHz. 

 

 

Fig. S18. The simulated angular dependence of ESR spectra of 3+ by using of the calculated magnetic parameters: 

gtrue = [2.0099, 2.0095, 2.0092], D = +3.1241 cm–1 and E = –0.0830 cm–1 with a peak-to-peak linewidth of 1 mT for. 

Microwave frequency used: 95 GHz. The simulated spectra were obtained using EasySpin (ver. 5.1.12) [3] with 

varying the angle of the magnetic field one-degree stepwise. 
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(c) cis-[CoII(hfac)2(H2O)2], complex 4 

 

 

 

 

Fig. S19. The ESR spectra of complex 4 obtained from the fictitious spin-1/2 and full spin Hamiltonians with (a) E/D 

= (a) 0.05, (b) 0.1, (c) 0.15, (d) 0.2 (e) 0.25 and (f) 0.3. The optimized true principal g-values are summarized in 

Table S6 below. The peak-to-peak linewidth was 2 mT. The g- and ZFS tensors were assumed to be collinear. 

 

Table S6. The sets of spin Hamiltonian parameters obtained from the spectral simulation. The g-values are given as 

optimized as a function of E/D. 

 B // x B // y B // z 

geff (ref. 4) 3.98 5.79 2.67 

gtrue 

E/D = +0.05 2.698 2.156 2.6915 

+0.1 2.550 2.350 2.750 

+0.15 2.410 2.597 2.855 

+0.2 2.300 2.888 3.002 

+0.25 2.223 3.237 3.198 

+0.3 2.156 3.654 3.445 

The true principal g-tensors based on the full spin Hamiltonian (1) were optimized for the fixed E/D values (0.05, 0.1, 0.15, 0.2, 0.25 

and 0.3). 

 

(a) (b) 

(c) (d) 

(e) (f) 
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Fig. S20. The plot of geff/gtrue shown in Table S6. The red, green and blue lines were calculated by using Eqs. (3a)–

(3c) for the |MS = ±1/2> dominant transitions corresponding to the principal x-, y- and z-axes, respectively. [1] A 

vertical dotted line is at E/D = 0.13. 

 

 

 

Fig. S21. The simulated (a) magnetization curve and (b) magnetic susceptibility of complex 4. Both the rank-2 ZFS 

and the electronic-Zeeman interaction tensors were considered in the spin Hamiltonian. 
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Non-collinear case 

 

 

 

 

 

 

 

 

 

 

 

Fig. S22. The simulated randomly-oriented (powder-pattern) ESR spectra of 4 magnetically diluted in diamagnetic 

cis-[Zn(hfac)2(H2O)2]. The spectra in blue and red are based on the fictitious spin-1/2 and ZFS/e-Zeeman spin Ham-

iltonian approach, respectively. Microwave frequency used: 9.4715 GHz, peak-to-peak linewidth: 2.0 mT. Magnetic 

tensors: geff = [5.79, 2.67, 3.98], Aeff(59Co) = [603.6, 58.82, 167.63] MHz and gtrue = [2.7, 2.75, 2.25], Atrue(59Co) = 

[99.2, 264.6, 61.0] MHz, D = 2.0 103 GHz and E/D = 0.10. The A- and D-tensors were assumed to be collinear, 

while the g-tensor was rotated 0, 90 and 138 degrees (in Euler angles) with respect to the D-tensor. Any strain effect 

of the tensor and the linewidth was not included. The simulated spectra were obtained by using EasySpin (ver. 5.1.12). 

[3] 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. S23. The relationships of the geff and gtrue-values calculated with the exact eigenenergies in the non-collinear 

case. The solid curves were the calculated effective g-values from the true g-values (gx = 2.7, gy = 2.75 and gz = 2.25) 

as a function of E/D for each axis. The E/D ratio used in the simulated spectrum (red line in Fig. 5) was obtained as 

the crossing point between the solid and the dashed lines. The gx
eff and gy

eff curves give E/D = 0.12 for the crossing 

points, and the gz
eff one E/D = 0.10. Note that the experimental error for the ratio of E/D was estimated  to be ± 0.02. 

The experimental effective g-values (5.79, 3.98 and 2.67) denoted by the dashed lines were reported in ref. [4].  
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