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1. General method for fluorescence titration
The stock solution of complex 3 and histidine are prepared in ethanol/water (1/1, v/v). Working
solutions are prepared from their respective stock solutions by proper dilution. Path length of the
cell used for emission study is 1cm.
2. Job’s plot from fluorescence experiments
A series of solutions containing complex 3 and histidineare prepared in ethanol/ water (1/1, v/v)
such that the total concentration of [complex3 + histidine] remain constant (50 pM) in all the
sets. The mole fractionof 3 is varied from 0.1 to 0.9. The fluorescence intensities are plotted
against the mole fraction of complex 3 to get the stoichiometry of [complex 3 —histidine] adduct.
3. Determination of quantum yield
Fluorescence quantum yields (@) are estimated by integratingthe area under the fluorescence

curves using the equation,



1< [OD

sample  ref

= X A
(Psample ¢ [ ref sample]

ref

where A is the area under the fluorescence spectra and OD is optical density of the compound at
the excitation wavelength. Tryptophan is used as reference with a known ®@,¢ value of 0.14 in
water. [1] The area of the emission spectrum is integrated using the software available in the
instrument. @g,mp1. and P rare the fluorescence quantum yields of the sample and reference
respectively. Agmpie and Ar are the area under the fluorescence spectra of the sample and the
reference, respectively. ODgympie and ODy¢ are the corresponding optical densities of the sample
and the reference solution at the wavelength of excitation. Ngmpie and nr are the refractive

indeces of the sample and reference, respectively.
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Fig. S1 Changes in fluorescence spectra of L in HEPES buffer (0.1 M, ethanol/water, 1/1, v/v,

pH 7.4) upon gradual addition of Cu?"(Ae = 380nm; Acy, = 440nm).
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Fig. S2Effect of pH on emission intensities of 3 in absence and presence of Histidine
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Fig.S3Emission intensities of (complex 3 + histidine) in presence of different amino acids.
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Fig. S4 Emission intensity of complex 3 as a function of added histidine in ethanol-water (1/1,

V/V); Aex. = 380 nm; A, = 440nm.
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Fig. S5 Hill plot for determination of binding constant of complex 3 for histidine in said solvent.
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Fig. S6 Plot of emission intensity of complex 3 as a function of added histidine in said solvent,

Aex = 380 nm; Ay, = 440 nm.
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Fig. S7 ESI-MS spectrum of [complex 3- His] adduct
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Fig. S8 Job’s plot for determination of stoichiometry of the adduct between complex 3 and

histidine.
Catecholaselike activity

Catecholase like activities of 3 and 4 have been performed using 3, 5-di-tertiarybutyl catechol
(DTBC) for its low redox potential and easy monitoring of absorbance ~400 nm (corresponding
o-quinone, DTBQ). The solutions of 3 and 4 are treated with different concentration of DTBC
(10 to 100 equiv.) to determine the effect of its concentration on reaction rate and evaluate
different kinetic parameters (Table S1, ESI). The rate constants are calculated from log[Aa/(Aa -
At)] vs. time plot. At low DTBC concentration, first order kinetics is observed. However, with
increasing DTBC concentration, saturation is observed for both 3 (Fig.S9, ESI) and 4 (Fig.S10,

ESI). The activities of 3 and 4 are monitored at 396 nm and 400 nm respectively (Fig. S11 and



S12, ESI).The rate constants are plotted against DTBC concentration using Michaelis—Menten
approach of enzymatic kinetics to obtain the Lineweaver-Burk(double reciprocal) plot. The rate
constant (turn over number, Kcat), maximum velocity (Vmax) and binding constant (KM) are
calculated from the plot: 1/V vs. 1/[S] (Fig S13 and Fig S14, ESI and Table 2), using the
equation 1/V = {KM/Vmax} X {1/[S]} + 1/Vmax. The probable mechanism for the 3,5-DTBC
oxidation catalyzed by the complexes proposed on the basis of the structures obtained from the

ESI-MS study of the complexes after addition of 3,5-DTBC '? (Fig S15 and Fig S16, ESI).
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Fig. S9 Increase of absorbance of quinone band at 396nm after addition of 3, 5-di-tertiary butyl

catechol (100 fold, 1x 10-2M) to 3 (1x 10-*M) in methanol at 5 min interval.
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Figure 10 Increase of absorbance at 400 nm (quinone band) upon addition of [DTBC] (1x 10-2M)

to 4 (1x 10*M) in methanol (time interval,5 min).
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Fig. S11 Rate vs. substrate concentration plot for complex 3; Inset: Lineweaver—Burk plot
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Fig. S12 Rate vs. [DTBC] plot for 4; Inset: Lineweaver—Burk plot.
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Fig. S13 ESI MS spectrum of complex 3 after addition of 3, 5-DTBC
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Fig. S14 ESI MS spectrum ofcomplex 4 after addition of 3, 5-DTBC
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Fig. S15 ESI MS spectrum of complex 3 after addition of 3, 5-DTBC at higher m/z region.
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Fig. S16 ESI MS spectrum of complex 4 after addition of 3, 5-DTBC at higher region.
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Fig. S17 ESI MS spectrum of L
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Fig. S18 'HNMR spectrum of L in CDCl;
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Fig. S19 FTIR spectrum of complex 3
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Fig. S20 Absorption spectrum of complex 3
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Fig. S21 The Ay =471 nm (corresponding band gap is ~ 2.62 eV). Thus, a blue shift of the band

gap energy of the synthesized CuO NCs is observed to that of bulk CuO (1.2¢V).3
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Fig. S22 Emission spectrum of CuO NCs



The room temperature photoluminescence spectrum of prepared CuO NCs is shown in Fig. S18
(Agx = 340 nm). Four distinguishable emission peaks are observed at about 375, 395, 415 and 440
nm with different intensities for the CuO NC*. Two strong peaks at~375, 395 nm corresponds to
the band-edge emission. The band gap corresponds to the band edge emission is ~ 3.1eV, much
higher than the reported value. Two broad peaks at ~415 nm and 440 nm arises from singly
ionized oxygen vacancy resulting in green emission of CuO NCs because of recombination of a
photo generated hole with a singly ionized electron in valence band, also confirmed from the

Rietveld refinement result.
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Fig. S23 FTIR spectrum of complex 4
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Fig. 24 Absorption spectrum of complex 4

Table S1.Initial rates as a function of [3, 5-DTBC]; [1] = 1x10*mol dm™3]

[3,5-DTBC](mol dm-3) V (mol dm3s1) of 3 | V (mol dm-3 s!) of 4

1E-3 1.699E-4 1.31E-4
3E-3 2.064E-4 1.97E-4
5E-3 2.369E-4 2.378E-4
7E-3 2.491E-4 2.42E-4

1E-2 2.899E-4 2.58E-4




Table S2 Optimization of bases

Entry | Base Amount of base(mmol) Yield (%)
1. Cs,CO; 1.0 60
2. K;5POy, 1.0 21
3. K,CO; 1.0 82
4 K,CO; 1.2 88
5. K,CO; 1.3 96

Reaction condition: lodobenzene (1.0 mmol), benzamide (1.2mmol), catalyst (10mg), 18 h,

110°C, solvent free, GC yield

Reaction condition: lodobenzene (1.0 mmol), benzamide (1.2mmol), K,CO; (1.3 mmol), solvent

Table S3. Optimization of solvent

Entry Solvent Yield (%)
1. Water <5
2. Dimethyl formamide 54
3. p-Xylene <5
4. - 96

(2.5mL), catalyst (10mg), 18 h, 110°C.

Table S4 Structural and microstructural parameters of CuO NCs, from Rietveld refinement

Sample | G.O.F Structural parameters Microstructural
parameters
CuONGs | 1,17 Lattice Parameters Atomic Oxygen Texture Crystal | Lattice
coordinate | occupancy | factor size (nm) | strain
a(A) [bA) |[cA) |BO) 09112 0.9525 0.8771 216.76 | 1.1x1073
4.6825 | 3.4246 | 5.1305 | 99.38




Table S5.Crystal data of complex 3 and complex 4.

Complex 3 4

Empirical formula C,sH;5CICuN,O C;0H;30CIMnN4O,
Formula weight 338.28 568.99
Crystal system Monoclinic Orthorhombic
Space group P2,/c Pbca

T (K) 293 K 150 K

a (A) 7.0197(3) 9.4779(8)
b(A) 24.9592(19) 19.2235(17)
c(A) 8.1874(6) 28.921(2)

£ (©) 98.001(6) (90)

Volume (A3%) 1420.52(16) 5269.3(8)

Z 4 8

Pealcg/cm? 1.582 1.434

4. (mm1) 1.721 0.638

F(000) 692.0 2372.8

Index ranges

Reflections collected

Independent reflections
Final R indexes [/ > 20(])]

Final R indexes [all data]

-8<h<8,-30<k<30,
9<I<9
11403

2567 [Rin = 0.1046]
R, = 0.0783, wR, = 0.1508

Ry =0.1159, wR;, = 0.1663

-11<h<11,-24 <k<23,
-35<1<36
97358

5427 [Rin = 0.1639]
R, = 0.0452, wR, = 0.0843

Ry =0.1234, wR, =0.1115

References

1. N. Ademir, M. R. Liane, J. B. Adailton, S. Bruno, W. Clayton and S. Erineu, Inorg. Chem.

2002, 41, 1788-1794.

2. P. Seth, L. K. Das, M. G. B. Drew and A. Ghosh, Eur. J. Inorg. Chem. 2012, 2232-2242.

3. E.P. Kirby and R.F. Steiner, J. Phys. Chem., 1970, 74 (26) 4480.

4. A. Bhattacharjee and M. Ahmaruzzaman,RSC Adv., 2016, 6, 41348-41363.


http://pubs.rsc.org/is/results?searchtext=Author%3AM.%20Ahmaruzzaman

