Supporting Information

Charge Transfer Fluorescence in Imine Borane Adducts Towards a Vapochromic Litmus Test

Yashar Soltani, Samuel J. Adams, Jennifer Börger, Lewis C. Wilkins, Paul D. Newman, Simon J. A. Pope*, Rebecca L. Melen*

School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, Cymru/Wales, United Kingdom

Contents

1.	Experimental	2
1.1	General experimental	2
1.2	Synthesis of starting materials	2
1.2.1	Synthesis of the borane reagents	2
1.2.2	Synthesis of the aldehyde reagents	3
1.2.3	Synthesis of the imine reagents	5
1.3	¹¹ B-NMR-Shifts of the adducts of aldehydes $1a-c$ and $2a-f$ with various boranes	7
1.4	Synthesis of the borane adducts for UV-vis. measurements	7
1.5	Assessing Lewis acidity via the Gutmann-Beckett method	10
2.	NMR spectra	11
2.1	NMR spectra of borane reagents and starting materials 1–2	11
2.2	NMR spectra of borane adducts of aldehydes 1a–c and 2a–f with various boranes	38
2.3	NMR spectra of borane adducts for UV-vis. measurements	55
3.	Photophysical studies	91
4.	Vapochromic Studies	92
5.	Crystallographic studies	93
6.	References	95

1. Experimental

1.1 General experimental

All reactions and manipulations were carried out under an atmosphere of dry, O₂-free nitrogen using standard double-manifold techniques with a rotary oil pump. An argon- or nitrogen-filled glove box (MBraun) was used to manipulate solids including the storage of starting materials, room temperature reactions, product recovery and sample preparation for analysis. The solvent (CH₂Cl₂) was dried by employing a Grubbs-type column system (Innovative Technology) or a solvent purification system MB SPS-800 and stored under a nitrogen atmosphere. The NEt₃ used in the imine formation reactions was dried over 3 Å molecular sieves. The CHCl₃ for the UV/vis and Fluorescence measurements was dried over CaH₂, distilled and degassed. Deuterated solvents were distilled and/or dried over molecular sieves before use. Chemicals were purchased from commercial suppliers and used as received. ¹H, ¹³C, ¹¹B, and ¹⁹F NMR spectra were recorded on a Bruker Avance 300 or Bruker Avance II 400. Chemical shifts are expressed as parts per million (ppm, δ) downfield of tetramethylsilane (TMS) and are referenced to CDCl₃ (7.26/77.16 ppm) as internal standards. NMR spectra were referenced to PPh₃ (³¹P), and BF₃·Et₂O/CDCl₃ (¹¹B). The description of signals include: s = singlet, d = doublet, t = triplet, q = quartet, p = pentet, sep = septet, m = multiplet and br. = broad. All coupling constants are absolute values and are expressed in Hertz (Hz). ¹³C NMR was measured as ¹H decoupled. Yields are given as isolated yields. Mass spectra were measured on a Waters LCT Premier/XE or a Waters GCT Premier spectrometer.

UV-Visible absorption studies were performed on a Shimadzu UV-1800 spectrophotometer a CHCl₃ solutions $(1 \times 10^{-5} \text{ M})$ unless otherwise stated. Photophysical data were obtained on a JobinYvon–Horiba Fluorolog spectrometer fitted with a JY TBX picosecond photodetection module as CHCl₃ solutions unless otherwise stated. Solid-state luminescence samples were prepared by filling a cuvette with a 10^{-3} M solution of the compound and then removing the solvent under vacuum to leave a film on the wall of the cuvette. Emission spectra were uncorrected and excitation spectra were instrument corrected. The pulsed source was a Nano-LED configured for 295 nm output operating at 1 MHz. Luminescence lifetime profiles were obtained using the JobinYvon–Horiba FluoroHub single photon counting module and the data fits yielded the lifetime values using the provided DAS6 deconvolution software.

1.2 Synthesis of starting materials.

1.2.1 Synthesis of the borane reagents.

Tris(pentafluorophenyl) borane.

Tris(pentafluorophenyl)borane was synthesised in a procedure used previously^[1] whereby magnesium turnings (1.1 g, 45 mmol, 1 equiv.) were suspended in Et₂O (100 ml) to which C_6F_5Br (5.6 ml, 45 mmol, 3 equiv.) was added dropwise over the course of 30 minutes whilst stirring, without allowing the mixture to reach reflux. After stirring at ambient temperature for 30 mins, this mixture was transferred *via* filter cannula to a stirred solution of $BF_3 \cdot OEt_2$ (1.9 ml, 15 mmol, 1 equiv.) in toluene (100 ml). The excess Et₂O solvent was

removed under vacuum leaving the mixture as a toluene solution. The reaction was then set to react at 100 °C for 1 h then left to cool to ambient temperature. The remaining solvent was removed under reduced pressure whilst gently heating in an oil bath until a brown cake remains. This was the subject to a two-fold sublimation (110 °C, 1 x 10^{-3} mbar) whereupon the pure B(C₆F₅)₃ was collected as a white microcrystalline solid. Yield: 6.7 g, 13.2 mmol, 88%. The spectroscopic data agrees with literature established values.^[1] **11B** NMR (128 MHz, CDCl₃, 298

K) δ/ppm: 59.6 (br. s). ¹⁹**F NMR** (471 MHz, CDCl₃, 298 K) δ/ppm: -127.73 (br. s, 6F, *o*-F), -142.46 (br. s, 3F, *p*-F), -159.83 (br. s, 6F, *m*-F).

Tris(3,4,5-trifluorophenyl) borane.

A solution of 5-Bromo-1,2,3-trifluorobenzene (3.5 ml, 29.4 mmol, 1 equiv) in diethylether (50 ml, dry) was cooled to -78 °C under nitrogen and "BuLi (20 ml, 1.47 M, 29.4 mmol, 1 equiv) in hexane was added dropwise. The solution turns yellow and is stirred for an additional 2 h to turn in to a white suspension. $BF_3 \cdot OEt_2$ (1.2 ml, 9.8 mmol, 0.33 equiv) was added dropwise and the mixture was allowed to warm to room temperature and stirred overnight. After removing the solvent *in vacuo*, the solid residue was sublimed and the

yielding oily yellow crystals were washed with pentane and sublimed again to give white crystals (0.65 g, 1.61 mmol 16%). Spectroscopic data agrees with literature values.^[2] ¹**H** NMR (400 MHz, CDCl₃, 298 K) δ /ppm: 7.07 (t, ${}^{3}J_{\text{HF}} = 7.4$ Hz, 6H). ${}^{13}C{}^{1}H$ NMR (100 MHz, CDCl₃, 298 K) δ /ppm: 151.3 (ddd, ${}^{1}J_{\text{CF}} = 254.0$ Hz, ${}^{2}J_{\text{CF}} = 9.6$ Hz, ${}^{3}J_{\text{CF}} = 2.7$ Hz), 143.0 (dt, ${}^{1}J_{\text{CF}} = 260.9$, ${}^{2}J_{\text{CF}} = 15.0$ Hz), 136.5–136.0 (m), 122.0 (dd, ${}^{2}J_{\text{CF}} = 13.6$, ${}^{3}J_{\text{CF}} = 5.4$ Hz). ${}^{19}F$ NMR (376 MHz, CDCl₃, 298 K) δ /ppm: -133.2 (d, ${}^{3}J_{\text{FF}} = 20.1$ Hz, m-F), -152.4 (t, ${}^{3}J_{\text{FF}} = 20.1$ Hz, p-F). ${}^{11}B$ NMR (160 MHz, CDCl₃, 298 K) δ /ppm: 64.6 ppm.

Tris(2,4,6-trifluorophenyl) borane.

According to the literature,^[3] using 1-bromo-2,4,6-trifluorobenzene (3.50 ml, 30 mmol, 3 equiv.) was dissolved in freshly distilled THF (100 ml) and cooled to -20 °C. At this temperature ^{*i*}PrMgCl (15 ml, 30 mmol, 3 equiv.) was added dropwise. The reaction mixture was then allowed to reach 0 °C and after 1 h at this temperature cooled again to - 50 °C. Subsequently, $BF_3 \cdot Et_2O$ (1.23 ml, 10 mmol, 1 equiv.) was added dropwise and

after 1 h the cooling bath was removed and the reaction mixture warmed to room temperature within another hour. Removal of all volatiles and a two-fold sublimation of the remaining solid (120 °C, 1 x 10⁻³ mbar) afforded the pure product (3.35 g, 8.3 mmol, 83%). Spectroscopic analyses agree with literature values.^[3] **¹H NMR** (500 MHz, CDCl₃, 298 K) δ /ppm: 6.64 (t, ³*J*_{HF} = 8.3 Hz, 6H, aryl). ¹¹**B NMR** (128 MHz, CDCl₃, 298 K) δ /ppm: 58.4 (br. s). ¹⁹**F NMR** (471 MHz, CDCl₃, 298 K) δ /ppm: -95.75 (d, ⁴*J*_{FF} = 10.4 Hz, 6F, *o*-F), -100.31 (t, ⁴*J*_{FF} = 10.4 Hz, 3F, *p*-F).

1.2.2 Synthesis of the aldehyde reagents.

General procedure 1: In accordance with the literature^[4] CuI (1 mol%), Pd(PPh₃)₂Cl₂ (2 mol%) and the corresponding aldehyde (1.0 equiv.) were stirred in dry NEt₃. The acetylene reagent (1.2 equiv.) was added slowly at room temperature. The reaction mixture was heated up to 60 °C for 19 h. After cooling the solution to room temperature, the suspension was filtered using a silica plug and washed with Et₂O (2 x 10 ml). The solvent was removed *in vacuo* and the crude product was purified by column chromatography. The resultant oil was distilled to give the desired product.

2-(phenylethynyl)benzaldehyde (1a).

In accordance to *General procedure 1*, CuI (20.6 mg, 0.11 mmol, 1 mol%), Pd(PPh₃)₂Cl₂ (151 mg, 0.22 mmol, 2 mol%) and 2-bromobenzaldehyde (1.26 ml, 11 mmol, 1.0 equiv.) and phenylacetylene (1.42 mL, 13 mmol, 1.2 equiv.) in dry NEt₃ (40 ml) were used to synthesis the compound **1a**. The crude product was purified by column (SiO₂, hexane/EtOAc, 50:1). The oil was distilled (180 °C, 15 mmHg) to give the desired product as an oil. Yield: 2.19 g,

9.70 mmol, 90%. Spectroscopic data agrees with literature known values.^[4] ¹**H** NMR (400 MHz, CDCl₃, 298 K) δ /ppm: 10.66 (d, ⁴*J*_{HH} = 0.8 Hz, 1H), 7.95 (ddd, ³*J*_{HH} = 7.8 Hz, ⁴*J*_{HH} = 1.5 Hz, ⁴*J*_{HH} = 0.6 Hz, 1H), 7.63 (ddd, ³*J*_{HH} = 7.8 Hz, ⁴*J*_{HH} = 1.5 Hz, ⁴*J*_{HH} = 1.5 Hz, ⁴*J*_{HH} = 1.5 Hz, ⁴*J*_{HH} = 1.5 Hz, ⁴*J*_{HH} = 0.6 Hz, 1H), 7.59–7.53 (m, 3H), 7.49–7.44 (m, 1H), 7.40–7.35 (m, 3H). ¹³C{¹H} NMR (126 MHz, CDCl₃, 298 K) δ /ppm: 191.8 (s), 135.9 (s), 133.9 (s), 133.3 (s), 131.8 (s), 129.2 (s), 128.7 (s), 128.6 (s), 127.3 (s), 126.9 (s), 122.4 (s), 96.4 (s), 85.0 (s).

2-((4-methoxyphenyl)ethynyl)benzaldehyde (1b).

In accordance to *General procedure 1*, CuI (42 mg, 0.22 mmol, 4 mol%), Pd(PPh₃)₂Cl₂ (78 mg, 0.11 mmol, 2 mol%), 2-ethynylbenzaldehyde (0.94 g, 7.22 mmol, 1.3 equiv.) and 4-iodoanisol (1.30 g, 11 mmol, 1.0 equiv.) in dry NEt₃ (50 ml) were used to synthesise compound **1b**. The crude product was purified by column (SiO₂, hexane/EtOAc, 40:1,

gradient to 35:1). The resulting orange oil was recrystallised from CH₂Cl₂/Hexane. The product was isolated as a colourless solid. Yield: 0.602 g, 2.5 mmol, 46%. Spectroscopic data agrees with literature known values.^[4] ¹**H NMR** (400 MHz, CDCl₃, 298 K) δ /ppm: 10.65 (d, ⁴*J*_{HH} = 0.8 Hz, 1H), 7.94 (ddd, ³*J*_{HH} = 7.9 Hz, ⁴*J*_{HH} = 1.4 Hz, ⁴*J*_{HH} = 0.6 Hz, 1H), 7.65–7.55 (m, 2H), 7.54–7.48 (m, 2H), 7.43 (m, 1H), 6.94–6.88 (m, 2H), 3.85 (s, 3H). ¹³C{¹H} **NMR** (126 MHz, CDCl₃, 298 K) δ /ppm: 192.0 (s), 160.4 (s), 135.8 (s), 133.9 (s), 133.4 (s), 133.2 (s), 128.4 (s), 127.5 (s), 127.3 (s), 114.5 (s), 114.3 (s), 96.7 (s), 83.9 (s), 55.5 (s).

4-((4-methoxyphenyl)ethynyl)benzaldehyde (1c).

In accordance with *General procedure 1*, CuI (15 mg, 0.08 mmol, 1 mol%), $Pd(PPh_3)_2Cl_2$ (114 mg, 0.17 mmol, 2 mol%), 4-ethynylanisole (1.05 ml, 8.1 mmol, 1.0 equiv.) and 4-bromobenzaldehyde (1.80 g, 9.7 mmol, 1.2 equiv.) in dry NEt₃ (60 ml) were used to synthesise compound **1c**. The crude product was purified by column (SiO₂, hexane/EtOAc, 40:1, gradient to 10:1). The product was isolated as a white

solid. Yield: 1.29 g, 5.5 mmol, 67%. Spectroscopic data agrees with literature known values.^[4] ¹**H** NMR (400 MHz, CDCl₃, 298 K) δ/ppm: 10.01 (s, 1H), 7.89–7.81 (m, 2H), 7.68–7.62 (m, 2H), 7.53–7.48 (m, 2H), 6.95–6.87 (m, 2H), 3.85 (s, 3H). ¹³C{¹H} NMR (126 MHz, CDCl₃, 298 K) δ/ppm: 191.6 (s), 160.3 (s), 135.2 (s), 132.0 (s), 130.2 (s), 129.7 (s), 114.7 (s), 114.3 (s), 93.9 (s), 87.6 (s), 55.5 (s).

1.2.3 Synthesis of the imine reagents.

General procedure 2: The aldehyde (1.0 equiv.) was dissolved in dry CH_2Cl_2 with molecular sieves. The amine (4.0 equiv.) was added slowly. The reaction mixture was stirred for 18 h at room temperature. The solution was filtered and washed with CH_2Cl_2 (2 x 10 ml). The solvent was removed *in vacuo*. The crude product was dried under vacuum to remove any unreacted amine.

General procedure 3: The aldehyde (1.0 equiv.) was solved in dry CH_2Cl_2 with MgSO₄. The amine (4.0 equiv.) was added slowly. The reaction mixture was stirred for 18 h at room temperature. The solution was filtrated and washed with CH_2Cl_2 . The solvent was removed *in vacuo* with the crude product being dried over MgSO₄, and the volatiles removed *in vacuo*.

N-(2-((4-methoxyphenyl)ethynyl)benzylidene)aniline (2a).

In accordance with *General procedure* 2, **2a** was synthesised using **1b** (100 mg, 0.42 mmol, 1.0 equiv.) and aniline (0.15 ml, 1.7 mmol, 4.0 equiv.) in CH₂Cl₂ (2.5 ml). The product was isolated as an orange oil. Yield: 83 mg, 0.27 mmol, 63%. ¹H NMR (500 MHz, CDCl₃, 298 K) δ /ppm: 9.10 (s, 1H), 8.30–8.24 (m, 1H), 7.61–7.57 (m, 1H), 7.50–7.46 (m, 2H), 7.44–7.40 (m, 2H), 7.18–7.13 (m, 2H), 6.91–6.87 (m, 2H), 6.76 (tt, ³*J*_{HH} = 7.4 Hz, ⁴*J*_{HH} = 1.0 Hz, 1H), 6.71–6.68 (m, 2H), 3.84 (s, 3H). ¹³C NMR (126 MHz, CDCl₃,

298 K) δ /ppm: 160.1 (s), 159.2 (s), 152.4 (s), 136.6 (s), 133.2 (s), 132.7 (s), 131.0 (s), 129.4 (s), 129.4 (s), 128.5 (s), 126.7 (s), 126.2 (s), 121.2 (s), 118.7 (s), 115.2 (s), 114.3 (s), 95.7 (s), 85.2 (s), 55.5 (s). **HRMS** (ES⁺) *m/z* calculated for [C₂₂H₁₈NO]⁺ [M+H]⁺: 312.1388, found: 312.1388.

N-isopropyl-1-(2-((4-methoxyphenyl)ethynyl)phenyl)methanimine (2b).

OMe

In accordance with *General procedure* 2, **2b** was synthesised using **1b** (150 mg, 0.64 mmol, 1.0 equiv.) and isopropylamine (0.22 ml, 2.6 mmol, 4.0 equiv.) in CH₂Cl₂ (2.5 ml). The product was isolated as a yellow oil. Yield: 58 mg, 0.21 mmol, 33%. ¹H **NMR** (400 MHz, CDCl₃, 298 K) δ /ppm: 8.90 (d, ⁴*J*_{HH} = 0.8 Hz, 1H), 8.09–8.03 (m, 1H), 7.57–7.46 (m, 3H), 7.41–7.29 (m, 2H), 6.94–6.87 (m, 2H), 3.85 (s, 3H), 3.63 (pd,

 ${}^{3}J_{\text{HH}} = 6.3 \text{ Hz}, {}^{4}J_{\text{HH}} = 0.8 \text{ Hz}, 1\text{H}$), 1.29 (d, ${}^{3}J_{\text{HH}} = 6.3 \text{ Hz}, 6\text{H}$). ${}^{13}\text{C}\{{}^{1}\text{H}\}$ **NMR** (126 MHz, CDCl₃) δ /ppm: 160.0 (s), 157.2 (s), 137.0 (s), 133.1 (s), 132.4 (s), 130.1 (s), 128.4 (s), 126.5 (s), 124.3 (s), 115.2 (s), 114.2 (s), 95.0 (s), 85.4 (s), 62.0 (s), 55.5 (s), 24.4 (s). **HRMS** (ES⁺) m/z calculated for [C₁₉H₂₀NO]⁺ [M+H]⁺: 278.1545, found: 278.1552.

N-butyl-1-(2-((4-methoxyphenyl)ethynyl)phenyl)methanimine (2c).

In accordance with *General procedure 2*, **2c** was synthesised using **1b** (270 mg, 1.1 mmol, 1.0 equiv.) and *n*-butylamine (0.45 ml, 4.4 mmol, 4.0 equiv.) in CH₂Cl₂ (4 ml). The product was isolated as a yellow solid. Yield: 191 mg, 0.65 mmol, 57%. ¹H NMR (400 MHz, CDCl₃, 298 K) δ /ppm: 8.87 (d, ⁴J_{HH} = 1.4 Hz, 1H), 8.04 (dd, ³J_{HH} = 7.4 Hz, ⁴J_{HH} = 1.9 Hz, 1H), 7.58–7.46 (m, 3H), 7.42–7.29 (m, 2H), 6.97–6.86 (m, 2H), 3.84 (s,

3H), 3.68 (td, ${}^{3}J_{HH} = 7.0$ Hz, ${}^{4}J_{HH} = 1.4$ Hz, 2H), 1.79–1.66 (m, 2H), 1.49–1.34 (m, 2H), 0.96 (t, ${}^{3}J_{HH} = 7.4$ Hz, 2H), 1.79–1.66 (m, 2H), 1.49–1.34 (m, 2H), 0.96 (t, ${}^{3}J_{HH} = 7.4$ Hz, 2H), 1.79–1.66 (m, 2H), 1.49–1.34 (m, 2H), 0.96 (t, {}^{3}J_{HH} = 7.4 Hz, 2H), 1.79–1.66 (m, 2H), 1.49–1.34 (m, 2H), 0.96 (t, {}^{3}J_{HH} = 7.4 Hz, 2H), 1.79–1.66 (m, 2H), 1.49–1.34 (m, 2H), 0.96 (t, {}^{3}J_{HH} = 7.4 Hz, 2H), 1.79–1.66 (m, 2H), 1.49–1.34 (m, 2H), 0.96 (t, {}^{3}J_{HH} = 7.4 Hz, 2H), 1.79–1.66 (m, 2H), 1.49–1.34 (m, 2H), 0.96 (t, {}^{3}J_{HH} = 7.4 Hz, 2H), 1.79–1.66 (m, 2H), 1.49–1.34 (m, 2H), 0.96 (t, {}^{3}J_{HH} = 7.4 Hz, 2H), 1.79–1.66 (m, 2H), 1.49–1.34 (m, 2H), 0.96 (t, {}^{3}J_{HH} = 7.4 Hz, 2H), 1.79–1.66 (m, 2H), 1.49–1.34 (m, 2H), 0.96 (t, {}^{3}J_{HH} = 7.4 Hz, 2H), 1.79–1.66 (m, 2H), 1.49–1.34 (m, 2H), 0.96 (t, {}^{3}J_{HH} = 7.4 Hz, 2H), 1.49–1.34 (m, 2H), 0.96 (t, {}^{3}J_{HH} = 7.4 Hz, 2H), 1.49–1.44 (t, {}^{3}J_{HH} = 7.4 Hz, 2H), 1.49–

3H). ¹³C{¹H} NMR (126 MHz, CDCl₃, 298 K) δ /ppm: 207.2 (s), 160.0 (s), 159.7 (s), 136.8 (s), 133.1 (s), 132.5 (s), 130.1 (s), 128.4 (s), 126.3 (s), 124.4 (s), 115.2 (s), 114.2 (s), 95.0 (s), 85.4 (s), 61.8 (s), 55.5 (s), 33.1 (s), 20.6 (s), 14.1 (s). **HRMS** (ES⁺) m/z calculated for $[C_{20}H_{22}NO]^+$ [M+H]⁺ 292.1701 found: 292.1700.

1-(4-((4-methoxyphenyl)ethynyl)phenyl)-N-phenylmethanimine (2d).

In accordance with General procedure 3, 2d was synthesised using 1c (150 mg, 0.63 mmol, 1.0 equiv.) and aniline (0.23 ml, 2.5 mmol, 4.0 equiv.) in CH₂Cl₂ (2 ml). The product was isolated as a light-yellow solid. Yield: 52.3 mg, 0.17 mmol, 26%. ¹H NMR (400 MHz, CDCl₃, 298 K) δ/ppm: 8.46 (s, 1H), 7.92-7.85 (m, 2H), 7.64–7.58 (m, 2H), 7.53–7.47 (m, 2H), 7.44–7.38 (m, 2H), 7.29–7.20 (m, 3H), 6.93–6.87 (m, 2H), 3.84 (d, ${}^{4}J_{\text{HH}} = 0.5$ Hz, 3H). ${}^{13}C{}^{1}H$ NMR (126 MHz, CDCl₃) δ /ppm: 207.2 (s), 160.0 (s), 159.6 (s), 152.0 (s), 135.6 (s), 133.3 (s), 131.9 (s), 129.4 (s), 129.3 (s), 128.8 (s), 126.8 (s), 126.3 (s), 121.0 (s), 115.2 (s), 115.1 (s), 114.2 (s), 92.1 (s), 88.1 (s), 55.5 (s). **HRMS** (ES⁺) m/z calculated for $[C_{22}H_{18}NO]^+$ [M+H]⁺: 312.1388 found: 312.1387.

N-isopropyl-1-(4-((4-methoxyphenyl)ethynyl)phenyl)methanimine (2e).

In accordance with General procedure 2, 2e was synthesised using 1c (250 mg, 1.1 mmol, 1.0 equiv.) and isopropylamine (0.36 ml, 4.2 mmol, 4.0 equiv.) in CH₂Cl₂ (4 ml). The product was isolated as a yellow solid. Yield: 50 mg, 0.18 mmol, 17%. ¹H NMR (400 MHz, CDCl₃, 298 K) δ/ppm: 8.29 (s, 1H), 7.72-7.68 (m, 2H), 7.56–7.52 (m, 2H), 7.50–7.46 (m, 2H), 6.91–6.86 (m, 2H), 3.83 (s,

3H), 3.61–3.49 (m, 1H), 1.27 (d, ${}^{3}J_{\text{HH}} = 6.3 \text{ Hz}$, 6H). ${}^{13}\text{C}\{{}^{1}\text{H}\}$ NMR (126 MHz, CDCl₃, 298 K) δ /ppm: 159.9 (s), 157.8 (s), 135.9 (s), 133.3 (s), 131.7 (s), 128.1 (s), 125.7 (s), 115.3 (s), 114.2 (s), 91.3 (s), 88.1 (s), 61.9 (s), 55.5 (s), 24.3 (s). **HRMS** (ES⁺) m/z calculated for $[C_{19}H_{20}NO]^+$ [M+H]⁺: 277.1467, found: 277.1469.

N-butyl-1-(4-((4-methoxyphenyl)ethynyl)phenyl)methanimine (2f).

In accordance with General procedure 3, 2f was synthesised using 1c (500 mg, 2.1 mmol, 1.0 equiv.) and n-butylamine (0.84 ml, 8.5 mmol, 4.0 equiv.) in CH₂Cl₂ (8 ml). The product was isolated as a yellow solid. Yield: 523 mg, 1.8 mmol, 85%. ¹H **NMR** (400 MHz, CDCl₃, 298 K) δ /ppm: 8.26 (t, ${}^{4}J_{HH} = 1.3$ Hz, 1H), 7.73–7.65 (m, 2H), 7.58–7.52 (m, 2H), 7.50–7.43 (m, 2H), 6.94–6.84 (m, 2H), 3.83 (s, 3H), 3.62 (td,

 ${}^{3}J_{\text{HH}} = 7.0 \text{ Hz}, {}^{4}J_{\text{HH}} = 1.3 \text{ Hz}, 2\text{H}, 1.77-1.63 \text{ (m, 2H)}, 1.47-1.33 \text{ (m, 2H)}, 0.95 \text{ (t, } {}^{3}J_{\text{HH}} = 7.4 \text{ Hz}, 3\text{H}).$ **NMR** (126 MHz, CDCl₃) δ/ppm: 160.5 (s), 160.2 (s), 136.1 (s), 133.6 (s), 132.1 (s), 128.3 (s), 126.1 (s), 115.6 (s), 114.5 (s), 91.7 (s), 88.4 (s), 62.0 (s), 55.8 (s), 33.5 (s), 21.0 (s), 14.4 (s). HRMS (ES+) m/z calculated for [C₂₀H₂₁NO]⁺ [M+H]⁺ 292.1701, found 292.1700.

1.3 ¹¹B-NMR-Shifts of the adducts of aldehydes 1a–c and 2a–f with various boranes.

Table 1: ¹¹B-NMR-Shift of the adducts of aldehydes **1a–c** and different boranes

Substrate	B(C ₆ F ₅) ₃	2,4,6-BArF9	BPh ₃	
1 a	4.5 ppm	*	*	
1b	4.1 ppm	22.1 ppm	*	
1c	4.1 ppm	22.3 ppm	*	

Table 2: ¹¹B-NMR-Shift of the adducts of imines 2a-e with different boranes

Compound	$B(C_{6}F_{5})_{3}$	2,4,6-BArF9	BPh ₃
2a	-5.3 ppm	*	*
2b	-5.0 ppm	-4.7 ppm	*
2c	-3.7 ppm	-3.3 ppm	-1.8 ppm
2d	-5.1 ppm	*	*
2e	-4.0 ppm	-4.4 ppm	*
2f	-3.5 ppm	-3.1 ppm	5.3 ppm

1.4 Synthesis of the borane adducts for UV-vis. measurements.

General procedure 4: The imine 2(1.0 equiv.) was dissolved in CDCl₃ with subsequent addition to the borane (1.0 equiv.).

N-butyl-1-(4-((4-methoxyphenyl)ethynyl)phenyl)methanimine adduct with B(C₆F₅)₃.

In accordance with *General procedure 4*, the adduct was synthesised using **2f** (29.1 mg, 0.10 mmol, 1.0 equiv.) and B(C₆F₅)₃ (51.2 mg, 0.10 mmol, 1.0 equiv.). ¹**H NMR** (400 MHz, CDCl₃, 298 K) δ /ppm: 8.57 (s, 1H), 7.74–7.68 (m, 2H), 7.66–7.60 (m, 2H), 7.54–7.49 (m, 2H), 6.97–6.88 (m, 2H), 4.25–3.96 (m, 2H), 3.85 (s, 3H), 1.07–0.91 (m, 2H), 0.59 (t, ³*J*_{HH} = 7.3 Hz, 3H), 0.09 (s, 2H). ¹³**C NMR** (101 MHz,

CDCl₃, 298 K) δ /ppm: 169.8 (s), 160.7 (s), 148.2 (dm, ${}^{1}J_{CF} = 247.5$ Hz), 140.4 (dm, ${}^{1}J_{CF} = 248.9$ Hz), 137.4 (dm, ${}^{1}J_{CF} = 255.2$ Hz), 133.7 (s), 132.5 (s), 130.1 (s), 129.5 (s), 128.9 (s), 117.2 (s), 114.4 (s), 114.2 (s), 95.4 (s), 87.1 (s), 55.5 (s), 52.9 (s), 30.4 (s), 20.4 (s), 13.1 (s). {}^{11}B NMR (160 MHz, CDCl₃, 298 K) δ /ppm: -3.5 (br. s). {}^{19}F NMR (471 MHz, CDCl₃, 298 K) δ /ppm: -127.83 (br. s, 1F), -128.72 (br. s, 1F), -129.23 (br. d, 1F), -130.55 (d, ${}^{2}J_{FF} = 21.8$ Hz, 1F), -131.24 (br. s, 2F), -134.80 (s, 1F), -155.51 (br. d, 1F), -157.18 (t, ${}^{2}J_{FF} = 20.1$ Hz, 1F), -159.94 (br. s, 1F), -162.92 (br. s, 2F), -163.39 (t, ${}^{2}J_{FF} = 18.8$ Hz, 1F), -163.96 (m, 3F).

N-butyl-1-(4-((4-methoxyphenyl)ethynyl)phenyl)methanimine adduct with 2,4,6-BArF9.

In accordance with *General procedure 4*, the adduct was synthesised using **2f** (29.1 mg, 0.10 mmol, 1.0 equiv.) and 2,4,6-BArF₉ (40.4 mg, 0.10 mmol, 1.0 equiv.). **¹H NMR** (400 MHz, CDCl₃, 298 K) δ /ppm: 8.61 (s, 1H), 7.71–7.65 (m, 2H), 7.61– 7.56 (m, 2H), 7.55–7.49 (m, 2H), 6.96–6.88 (m, 2H), 6.51 (t, ³*J*_{HH} = 9.1 Hz, 6H), 4.08 (t, ³*J*_{HH} = 11.6 Hz, 2H), 3.85 (s, 3H), 0.90 (pent., ³*J*_{HH} = 7.2 Hz, 2H), 0.54 (t, ³*J*_{HH} = 7.3 Hz, 3H), 0.10 (s, 2H). ¹³**C NMR** (101 MHz, CDCl₃, 298 K) δ /ppm: 168.1

(s), 166.1 (dt, ${}^{2}J_{CF} = 29.9$ Hz, ${}^{3}J_{CF} = 12.4$ Hz), 162.3 (dt, ${}^{1}J_{CF} = 244.9$ Hz, ${}^{3}J_{CF} = 15.8$ Hz), 160.5 (s), 133.6 (s), 132.3 (s), 130.2 (s), 128.9 (s), 128.7 (s), 117.4 (s), 114.4 (s), 114.4 (s), 100.1–99.1 (m), 94.1 (s), 87.2 (s), 55.5 (s), 52.7 (s), 30.5 (s), 20.6 (s), 13.2 (s).^{11}B NMR (160 MHz, CDCl₃, 298 K) δ /ppm: -3.1 (br. s).

$N-butyl-1-(4-((4-methoxyphenyl)ethynyl) phenyl) methanimine adduct with BPh_{3}.$

In accordance with *General procedure 4*, the adduct was synthesised using **2f** (29.1 mg, 0.10 mmol, 1.0 equiv.) and BPh₃ (24.2 mg, 0.10 mmol, 1.0 equiv.). ¹**H NMR** (400 MHz, CDCl₃) δ /ppm: 8.16 (s, 1H), 7.61–7.36 (m, 21H), 6.82–6.75 (m, 2H), 3.72 (s, 3H), 1.64–1.55 (m, 2H), 1.36–1.25 (m, 2H), 1.17 (s, 2H), 0.86 (t, ³*J*_{HH} = 7.4 Hz, 3H). ¹¹**B NMR** (128 MHz, CDCl₃) δ /ppm: 4.3 (br. s). ¹³C{¹H} **NMR** (126

MHz, CDCl₃, 298 K) δ/ppm: 168.6 (s), 160.2 (s), 159.9 (s), 138.7 (s), 135.8 (s), 133.3 (s), 132.2 (s), 131.7 (s), 130.1 (s), 128.1 (s), 127.5 (s), 114.2 (s), 91.4 (s), 88.1 (s), 61.7 (s), 55.4 (s), 33.2 (s), 20.6 (s), 14.1 (s).

N-butyl-1-(4-((4-methoxyphenyl)ethynyl)phenyl)methanimine adduct with 3,4,5-BArF₉.

In accordance with *General procedure 4*, the adduct was synthesised using **2f** (29.1 mg, 0.10 mmol, 1.0 equiv.) and 3,4,5-BArF₉ (40.4 mg, 0.10 mmol, 1.0 equiv.). ¹**H NMR** (400 MHz, CDCl₃, 298 K) δ /ppm: 8.40 (s, 1H), 7.73 (d, ³*J*_{HH} = 8.4 Hz, 2H), 7.58 (d, ³*J*_{HH} = 8.5 Hz, 2H), 7.54–7.48 (m, 2H), 6.96–6.89 (m, 2H), 6.81 (dd, ³*J*_{HH} = 8.9 Hz, ³*J*_{HH} = 6.8 Hz, 6H), 3.85 (s, 3H), 3.82 (m, 2H), 1.29–1.18

(m, 3H), 1.14 (q, ${}^{3}J_{HH} = 7.1$ Hz, 2H), 0.72 (t, ${}^{3}J_{HH} = 7.2$ Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ /ppm: 170.4 (s), 160.8 (s), 151.0 (ddd, ${}^{1}J_{CF} = 250.7$ Hz, ${}^{3}J_{CF} = 9.2$ Hz, ${}^{4}J_{CF} = 2.8$ Hz), 145.6 (s), 138.3 (dt, ${}^{1}J_{CF} = 250.5$ Hz, ${}^{3}J_{CF} = 15.5$ Hz), 133.7 (s), 132.60 (s), 131.2 (s), 130.8 (s), 127.6 (s), 117.6 (dd, ${}^{3}J_{CF} = 13.5$ Hz, ${}^{4}J_{CF} = 4.4$ Hz), 114.4 (s), 114.1 (s), 96.1 (s), 87.0 (s), 55.5 (s), 52.2 (s), 30.7 (s), 20.0 (s), 13.3 (s). ¹¹B NMR (160 MHz, CDCl₃, 298 K) δ /ppm: 2.9 (br. s). ¹⁹F NMR (471 MHz, CDCl₃, 298 K) δ /ppm: -135.64 (d, ${}^{3}J_{FF} = 20.3$ Hz, 2F), -163.82 (d, ${}^{3}J_{FF} = 20.3$ Hz, 1F).

$N-butyl-1-(4-((4-methoxyphenyl) ethynyl) phenyl) methanimine adduct with BF_{3}.$

In accordance with *General procedure 4*, the adduct was synthesised using **2f** (29.1 mg, 0.10 mmol, 1.0 equiv.) and BF₃·OEt₂ (12.7 µl, 0.10 mmol, 1.0 equiv.). ¹**H NMR** (400 MHz, CDCl₃, 298 K) δ /ppm: 8.29 (br. s, 1H), 7.98–7.92 (m, 2H), 7.61–7.56 (m, 2H), 7.51–7.45 (m, 2H), 6.92–6.83 (m, 2H), 3.82 (s, 3H), 1.84 (p, ³*J*_{HH} = 7.5 Hz, 2H), 1.45–1.33 (m, 2H), 0.97 (t, ³*J*_{HH} = 7.4 Hz, 3H), 0.91–0.81 (m, 2H). ¹³**C**

NMR (101 MHz, CDCl₃, 298 K) δ/ppm: 170.4 (s), 160.5 (s), 133.6 (s), 131.5 (s), 130.5 (s), 128.2 (s), 114.4 (s), 114.3 (s), 95.1 (s), 87.6 (s), 61.1 (s), 55.5 (s), 32.3 (s), 32.3 (s), 20.0 (s), 13.7 (s). ¹¹**B NMR** (160 MHz, CDCl₃, 298 K) δ/ppm: -0.1 (s). ¹⁹**F NMR** (471 MHz, CDCl₃, 298 K) δ/ppm: -144.19 (s, 1F).

N-butyl-1-(4-((4-methoxyphenyl)ethynyl)phenyl)methanimine adduct with BCl₃.

In accordance with *General procedure 4*, the adduct was synthesised using **2f** (29.1 mg, 0.10 mmol, 1.0 equiv.) and BCl₃ (100 µl, 1 M solution in CH₂Cl₂, 0.10 mmol, 1.0 equiv.). ¹**H NMR** (400 MHz, CDCl₃, 298 K) δ /ppm: 9.33 (dd, ³*J*_{HH} = 9.7 Hz, ⁴*J*_{HH} = 4.1 Hz, 1H), 8.15 (d, ³*J*_{HH} = 8.6 Hz, 1H), 7.78 – 7.71 (m, 2H), 7.63–7.58 (m, 1H), 7.53–7.47 (m, 2H), 6.94–6.87 (m, 2H), 4.32–4.18 (m, 2H), 3.84 (s,

3H), 2.09–1.86 (m, 2H), 1.51–1.39 (m, 2H), 1.04–0.93 (m, 3H). ¹³C NMR (101 MHz, CDCl₃, 298 K) δ/ppm: 169.3 (s), 160.8 (s), 133.7 (s), 132.6 (s), 132.5 (s), 131.6 (s), 114.4 (s), 113.9 (s), 96.8 (s), 87.1 (s), 55.5 (s), 51.2 (s), 30.9 (s), 20.3 (s), 13.6 (s). ¹¹B NMR (128 MHz, CDCl₃, 298 K) δ/ppm: 8.1 (s).

N-butyl-1-(4-((4-methoxyphenyl)ethynyl)phenyl)methanimine adduct with BBr₃.

In accordance with *General procedure 4*, the adduct was synthesised using **2f** (29.1 mg, 0.10 mmol, 1.0 equiv.) and BBr₃ (9.5 μl, 0.10 mmol, 1.0 equiv.). ¹**H NMR** (400 MHz, CDCl₃, 298 K) δ/ppm: 9.61 (s, 1H), 7.82–7.72 (m, 4H), 7.54–7.50 (m, 2H), 6.94–6.90 (m, 2H), 3.85 (s, 3H), 1.54–1.40 (m, 2H), 1.25 (s, 3H), 1.02–0.94 (m, 4H). ¹³**C NMR** (101 MHz, CDCl₃, 298 K) δ/ppm: 170.6 (s), 160.8 (s), 133.8 (s), 132.8

(s), 132.6 (s), 131.6 (s), 130.5 (s), 114.4 (s), 113.9 (s), 97.3 (s), 87.3 (s), 55.5 (s), 52.4 (s), 29.8 (s), 20.3 (s), 13.6 (s). ¹¹B NMR (128 MHz, CDCl₃, 298 K) δ/ppm: -7.1 (s).

1.5 Assessing Lewis acidity *via* the Gutmann-Beckett method.

General procedure 5: The Lewis acidity was determined using the Gutmann-Beckett method. The borane (1.7 equiv.) was dissolved in CDCl₃ (0.5 ml) and added to triethylphosphine oxide (1.0 equiv.). A capillary with PPh₃ in CHCl₃ was added as a standard. The shift of the PPh₃ in CDCl₃ was calibrated to $\delta = -5.21$ ppm according to Demchuk *et al.*⁵ The acceptor number was calculated according to Beckett *et al.*⁶ Relative Lewis acidities were calculated using the benchmark of B(C₆F₅)₃ as 100%.

Borane	³¹ P NMR chemical shift (δ /ppm)	Acceptor Number	Relative Lewis Acidity (%)
$B(C_{6}F_{5})_{3}$	76.0	77.5	100
2,4,6-BArF9	71.9	68.5	88
BPh ₃	64.9	52.9	68
3,4,5-BArF9	77.0	79.8	103
$BF_3 \cdot OEt_2$	78.7	83.5	108
BCl ₃	85.3	98.1	127
BBr ₃	88.5	105.2	136

2. NMR spectra.

- 2.1 NMR spectra of borane reagents and starting materials 1–2.
- S1 ¹H NMR (500 MHz, CDCl₃, 298 K) spectrum of tris(pentafluorophenyl)borane.

								-	•							-				
10.0	9.5	9.0	8.5	8.0	7.5	7.0	6.5	6.0	5.5	5.0	4.5	4.0	3.5	3.0	2.5	2.0	1.5	1.0	0.5	0.0

S2 ¹¹B NMR (160 MHz, CDCl₃, 298 K) spectrum of tris(pentafluorophenyl)borane.

— 59.56

180 160 140 120 100 80 60 40 20 -20 -40 -60 -100 -120 -140 -160 -180 -200 0 -80

S3 ¹⁹F NMR (471 MHz, CDCl₃, 298 K) spectrum of tris(pentafluorophenyl)borane.

S4 ¹H NMR (500 MHz, CDCl₃, 298 K) spectrum of tris(3,4,5-trifluorophenyl)borane.

S6¹⁹F NMR (471 MHz, CDCl₃, 298 K) spectrum of tris(3,4,5-trifluorophenyl)borane.

S7 ¹H NMR (500 MHz, CDCl₃, 298 K) spectrum of tris(2,4,6-trifluorophenyl)borane.

17

S8 ¹¹B NMR (160 MHz, CDCl₃, 298 K) spectrum of tris(2,4,6-trifluorophenyl)borane.

— 58.42

18

S9¹⁹F NMR (471 MHz, CDCl₃, 298 K) spectrum of tris(2,4,6-trifluorophenyl)borane.

S10 ¹H NMR (500 MHz, CDCl₃, 298 K) spectrum of 2-(phenylethynyl)benzaldehyde (1a).

S11 ¹³C{¹H} NMR (101 MHz, CDCl₃, 298 K) spectrum of 2-(phenylethynyl)benzaldehyde (**1a**).

S12 ¹H NMR (500 MHz, CDCl₃, 298 K) spectrum of 2-((4-methoxyphenyl)ethynyl)benzaldehyde (1b).

22

S13 ¹³C{¹H} NMR (101 MHz, CDCl₃, 298 K) spectrum of 2-((4-methoxyphenyl)ethynyl)benzaldehyde (**1b**).

S14 ¹H NMR (500 MHz, CDCl₃, 298 K) spectrum of 4-((4-methoxyphenyl)ethynyl)benzaldehyde (1c).

24

S16 ¹H NMR (500 MHz, CDCl₃, 298 K) spectrum of *N*-(2-((4-methoxyphenyl)ethynyl)benzylidene)aniline (2a).

S18 ¹H NMR (500 MHz, CDCl₃, 298 K) spectrum of *N*-isopropyl-1-(2-((4-methoxyphenyl)ethynyl)phenyl)methanimine (**2b**).

S19¹³C{¹H} NMR (101 MHz, CDCl₃, 298 K) spectrum of *N*-isopropyl-1-(2-((4-methoxyphenyl)ethynyl)phenyl)methanimine (**2b**).

S20 ¹H NMR (500 MHz, CDCl₃, 298 K) spectrum of *N*-butyl-1-(2-((4-methoxyphenyl)ethynyl)phenyl)methanimine (**2c**).

S21 ¹³C{¹H} NMR (101 MHz, CDCl₃, 298 K) spectrum of *N*-butyl-1-(2-((4-methoxyphenyl)ethynyl)phenyl)methanimine (2c).

S23 ¹³C{¹H} NMR (101 MHz, CDCl₃, 298 K) spectrum of 1-(4-((4-methoxyphenyl)ethynyl)phenyl)-*N*-phenylmethanimine (2d).

S24 ¹H NMR (500 MHz, CDCl₃, 298 K) spectrum of *N*-isopropyl-1-(4-((4-methoxyphenyl)ethynyl)phenyl)methanimine (2e).

S25 ¹³C{¹H} NMR (101 MHz, CDCl₃, 298 K) spectrum of *N*-isopropyl-1-(4-((4-methoxyphenyl)ethynyl)phenyl)methanimine (2e).

S26 ¹H NMR (500 MHz, CDCl₃, 298 K) spectrum of *N*-butyl-1-(4-((4-methoxyphenyl)ethynyl)phenyl)methanimine (2f).

S27 ¹³C{¹H} NMR (101 MHz, CDCl₃, 298 K) spectrum of *N*-butyl-1-(4-((4-methoxyphenyl)ethynyl)phenyl)methanimine (**2f**).

2.2 NMR spectra of borane adducts of aldehydes 1a–c and 2a–f with various boranes

S28 ¹¹B NMR (160 MHz, CDCl₃, 298 K) spectrum of adduct between **1a** and B(C₆F₅)₃.

— 4.52

S29 ¹¹B NMR (160 MHz, CDCl₃, 298 K) spectrum of adduct between **1b** and B(C₆F₅)₃.

S33 ¹¹B NMR (160 MHz, CDCl₃, 298 K) spectrum of adduct between 2a and $B(C_6F_5)_3$.

S34 ¹¹B NMR (160 MHz, CDCl₃, 298 K) spectrum of adduct between 2b and B(C₆F₅)₃.

S36 ¹¹B NMR (160 MHz, CDCl₃, 298 K) spectrum of adduct between 2c and $B(C_6F_5)_3$.

S37 ¹¹B NMR (160 MHz, CDCl₃, 298 K) spectrum of adduct between **2c** and 2,4,6-BArF₉.

S38 ¹¹B NMR (160 MHz, CDCl₃, 298 K) spectrum of adduct between **2c** and BPh₃.

— 67.42

S39 ¹¹B NMR (160 MHz, CDCl₃, 298 K) spectrum of adduct between 2d and $B(C_6F_5)_3$.

S40 ¹¹B NMR (160 MHz, CDCl₃, 298 K) spectrum of adduct between 2e and B(C₆F₅)₃.

S42 ¹¹B NMR (160 MHz, CDCl₃, 298 K) spectrum of adduct between 2f and $B(C_6F_5)_3$.

S43 11 B NMR (160 MHz, CDCl₃, 298 K) spectrum of adduct between **2f** and 2,4,6-BArF₉.

S44 ¹¹B NMR (160 MHz, CDCl₃, 298 K) spectrum of adduct between **2f** and BPh₃.

2.3 NMR spectra of borane adducts for UV-vis. measurements

S45 ¹H NMR (400 MHz, CDCl₃, 298 K) spectrum of adduct between **2f** and B(C₆F₅)₃.

S46 ${}^{13}C{}^{1}H$ NMR (126 MHz, CDCl₃, 298 K) spectrum of adduct between **2f** and B(C₆F₅)₃.

S48 ¹⁹F NMR (471 MHz, CDCl₃, 298 K) spectrum of adduct between **2f** and B(C₆F₅)₃.

S49 ¹H NMR (400 MHz, CDCl₃, 298 K) spectrum of adduct between **2f** and 2,4,6-BArF₉.

S50 ¹³C{¹H} NMR (126 MHz, CDCl₃, 298 K) spectrum of adduct between **2f** and 2,4,6-BArF₉

S51 11 B NMR (160 MHz, CDCl₃, 298 K) spectrum of adduct between **2f** and 2,4,6-BArF₉.

S52 ¹H NMR (400 MHz, CDCl₃, 298 K) spectrum of adduct between **2f** and BPh₃.

S53 ¹³C{¹H} NMR (126 MHz, CDCl₃, 298 K) spectrum of adduct between **2f** and BPh₃.

S54 ¹¹B NMR (160 MHz, CDCl₃, 298 K) spectrum of adduct between **2f** and BPh₃.

S55 ¹H NMR (400 MHz, CDCl₃, 298 K) spectrum of adduct between **2f** and 3,4,5-BArF₉.

S57 ¹¹B NMR (160 MHz, CDCl₃, 298 K) spectrum of adduct between **2f** and 3,4,5-BArF₉.

S58 ¹⁹F NMR (471 MHz, CDCl₃, 298 K) spectrum of adduct between **2f** and 3,4,5-BArF₉.

S60¹³C{¹H} NMR (126 MHz, CDCl₃, 298 K) spectrum of adduct between **2f** and BF₃.

S61 11 B NMR (160 MHz, CDCl₃, 298 K) spectrum of adduct between **2f** and BF₃.

180	160	140	120	100	80	60	40	20	0	-20	-40	-60	-80	-100	-120	-140	-160	-180	-200

S62 ^{19}F NMR (471 MHz, CDCl₃, 298 K) spectrum of adduct between 2f and BF₃.

S63 ¹H NMR (400 MHz, CDCl₃, 298 K) spectrum of adduct between **2f** and BCl₃.

S64 ¹³C{¹H} NMR (126 MHz, CDCl₃, 298 K) spectrum of adduct between **2f** and BCl₃.

S65 ¹¹B NMR (160 MHz, CDCl₃, 298 K) spectrum of adduct between **2f** and BCl₃.

S66 ¹H NMR (400 MHz, CDCl₃, 298 K) spectrum of adduct between **2f** and BBr₃.

S67 ¹³C{¹H} NMR (126 MHz, CDCl₃, 298 K) spectrum of adduct between **2f** and BBr₃.

77

S68 11 B NMR (160 MHz, CDCl₃, 298 K) spectrum of adduct between **2f** and BBr₃.

S69 ¹¹B NMR (160 MHz, CDCl₃, 298 K) spectrum of adduct between 2f and $B(C_6F_5)_3$ in CDCl₃.

S70 ¹¹B NMR (160 MHz, CH₂Cl₂, 298 K) spectrum of adduct between **2f** and B(C₆F₅)₃ in CH₂Cl₂.

S71 ¹¹B NMR (160 MHz, hexane, 298 K) spectrum of adduct between **2f** and $B(C_6F_5)_3$ in hexane.

S72 ¹¹B NMR (160 MHz, C₆H₅Cl, 298 K) spectrum of adduct between **2f** and B(C₆F₅)₃ in chlorobenzene.

S73 ¹¹B NMR (160 MHz, toluene, 298 K) spectrum of adduct between **2f** and $B(C_6F_5)_3$ in toluene.

S74 ³¹P NMR (162 MHz, CDCl₃, 298 K) spectrum of Gutmann-Beckett Lewis acidity test of B(C₆F₅)₃.

S75 ³¹P NMR (162 MHz, CDCl₃, 298 K) spectrum of Gutmann-Beckett Lewis acidity test of 2,4,6-BArF₉.

S76 ³¹P NMR (162 MHz, CDCl₃, 298 K) spectrum of Gutmann-Beckett Lewis acidity test of BPh₃.

S77 ³¹P NMR (162 MHz, CDCl₃, 298 K) spectrum of Gutmann-Beckett Lewis acidity test of 3,4,5-BArF₉.

S78 ³¹P NMR (162 MHz, CDCl₃, 298 K) spectrum of Gutmann-Beckett Lewis acidity test of BF₃.

S79 ³¹P NMR (162 MHz, CDCl₃, 298 K) spectrum of Gutmann-Beckett Lewis acidity test of BCl₃.

S80 ³¹P NMR (162 MHz, CDCl₃, 298 K) spectrum of Gutmann-Beckett Lewis acidity test of BF₃.

3. Photophysical studies.

S81 UV-Visible absorption spectra (a) and steady state emission spectra of **2c** and adducts in chloroform solution. $b - \lambda_{ex} = 330$ nm, $c - \lambda_{ex} = 400$ nm. $C = 10^{-5}$ mol dm⁻³, Emission spectra are not corrected for spectral response.

S82 Time based steady-state emission plot of $2\mathbf{f} \cdot B(C_6F_5)_3$ adduct in chloroform after exposure to air. $\lambda_{ex} = 400 \text{ nm}, \lambda_{em} = 500 \text{ nm}.$

S83 UV-Visible absorption (left) and steady state emission spectrum (right) of **1c** and its adduct with $B(C_6F_5)_3$ in chloroform solution. $\lambda_{ex} = 330$ nm. $C = 10^{-5}$ mol dm⁻³, emission spectra are not corrected for spectral response.

4. Vapochromic Studies.

Small strips of filter paper were impregnated with $2\mathbf{f} \cdot B(C_6F_5)_3$ from a 25 mM orange coloured solution of $2\mathbf{f}$ and $B(C_6F_5)_3$ in a glove box. After drying the paper strips under vacuum they were then subjected to atmospheres of different solvents by suspending them in a closed 15 mL vial above 3 mL of various coordinating and non-coordinating solvents. The change of visible colour and fluorescence (excitation using a hand-held UV-light at ex. 365 nm) were monitored over a time period of 48 h.

S84 Set-up for vapochromic solvent test.

5. Crystallographic studies.

Single crystals were grown under an inert atmosphere. Crystallographic studies were undertaken of a single crystal mounted in paratone and studied on an Agilent SuperNova diffractometer using Cu- or Mo-K α radiation and a CCD detector. Measurements were carried out at 150(2) K with temperatures maintained using an Oxford cryostream unless otherwise stated. Data were collected and integrated and data corrected for absorption using a numerical absorption correction based on gaussian integration over a multifaceted crystal model within CrysAlisPro.¹¹ The structures were solved by direct methods and refined against F^2 within SHELXL-2013.¹² The structures are deposited with the Cambridge Structural Database (CCDC deposition numbers 1836219). These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via <u>www.ccdc.cam.ac.uk/data_request/cif.</u>

Compound	2f · B(C ₆ F ₅) ₃
Empirical Formula	C ₃₈ H ₂₁ BF ₁₅ NO
Crystal System	Triclinic
Space Group	<i>P</i> -1
a/Å	10.8591(5)
b/Å	11.0549(4)
c/Å	15.5476(7)
a/Å	75.088(4)
b/Å	69.996(4)
c/Å	84.603(4)
$V/Å^3$	1694.73(14)
Ζ	2
T/K	150(2)
$D_c/\text{g.cm}^{-3}$	1.574
Crystal size/mm	0.263 x 0.233 x 0.155
Total data	15186
Unique data	3784
R _{int}	0.0458
$R_1[F^2>2 \sigma(F^2)]$	0.0489
wR2 (all data)	0.1380
GoF	1.016
$\rho_{min}\!/\rho_{max}\!/e {\AA}^{\text{-3}}$	-0.278/0.242
CCDC code	1836219

S85 Thermal ellipsoid plot (50% probability) of solid-state structure of $2\mathbf{f} \cdot B(C_6F_5)_3$.

6. References.

- (1) Soltani, Y.; Wilkins, L. C.; Melen, R. Angew. Chem. Int. Ed. **2017**, *56*, 11995.
- (2) Yin, Q.; Soltani, Y.; Melen, R. L.; Oestreich, M. Organometallics **2017**, *36*, 2381.
- (3) Lawson, J. R.; Wilkins, L. C.; Melen, R. L. *Chem. Eur. J.* **2017**, *23*, 10997.
- (4) Hansmann, M. M.; Lõpez-Andarias, A.; Rettenmeier, E.; Egler-Lucas, C.; Rominger, F.; Hashmi, A. S. K.; Romero-Nieto, C. *Angew. Chem. Int. Ed.* **2016**, *55*, 1196.
- (5) Demchuk, O. M.; Świerczyńska, W.; Dziuba, K.; Frynas, S.; Flis, A.; Pietrusiewicz, K. M. *Phosphorus. Sulfur. Silicon Relat. Elem.* **2017**, *192*, 64.
- (6) Beckett, M. A.; Strickland, G. C.; Holland, J. R.; Varma, K. S. *Polym. Commun.* **1996**, *37*, 4629.