Electronic Supplementary Material (ESI)

A facile synthesis of two new IR optical perovskites based on 1,4diazabicyclo[2,2,2]octane with high laser damage threshold

Jun-Ling Song,^a Wen-Jun Chen,^a Kai-Bin Chu,^a and Yu-Hua Zhou^{b*}

^aInternational Joint Research Center for Photoresponsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China ^bSchool of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore. *Corresponding author: yzhou@uclan.ac.uk

Table of Contents:

Figure S1. Experimental and calculated PXRD patterns of 1 (a) and 2 (b)

Figure S2 The Pb(1)-Cl(1,2) inifinite chain along the *a*-axis chain as second building unit in the structure; (b) the Pb(1)-Cl(4) chain along the *c*-axis as second building unit in the structure;

(c) the Pb(1)-Cl(3) 1D zig-zag chains along the *a*, *b*-axis as second building unit in the structure

of compound 1.

Figure S3. Inorganic moieties in 2, weak interactions are represented by dash lines.

Figure S4. UV-Vis-NIR absorption spectra for 1 (a) and 2(b).

Figure S5. FT-IR spectra of dabco (a), 1 (b) and 2 (c) (4000 – 500 cm⁻¹ region).

Figure S6. The measured SHG intensity versus particle size for 2.

Figure S7 The photo of compound 2 in solid state under the UV lamp.

Table S1. Atomic coordinates ($\times 10^4$) and equivalent isotropic displacement parameters ($\mathring{A}^2 \times 10^3$)

for 1 and 2. U_{eq} is defined as one third of the trace of the orthogonalized U_{ij} tensor.

Table S2. Bond distances (Å) and angles [°] for 1.

Table S3. Bond distances (Å) and angles [°] for 2.

Fig. S1.

3

(a)

(b)

(c)

(b)

Fig. S4.

Fig. S5.

Fig. S6.

Fig. S7.

Table S1.

Compound 1						
	X	У	Z	U(eq)		
Pb(1)	9827(1)	2533(1)	1135(1)	17(1)		
Cl(2)	10420(3)	420(3)	0	39(1)		
Cl(3)	7339(2)	2206(3)	456(2)	40(1)		
Cl(1)	9336(3)	664(3)	2500	48(1)		
N(1)	7619(11)	2855(12)	8321(7)	61(3)		
C(2)	6333(10)	2285(12)	8243(7)	38(3)		
C(3)	7852(18)	3903(18)	7761(9)	83(6)		
C(1)	8701(13)	1907(13)	7910(10)	55(4)		
Cl(4)	9166(3)	4947(3)	2048(2)	35(1)		
Compound 2						
	X	у	Z	U(eq)		
Pb(1)	16667	23333	-10522(1)	22(1)		
Br(1)	15316(2)	20631(3)	-9202(2)	52(1)		
N(1)	16667	23333	-5600(30)	27(7)		
N(2)	16667	23333	-7410(30)	34(10)		
Br(2)	13505(5)	21752(3)	-11604(3)	72(1)		
C(1)	14980(30)	22488(15)	-5954(19)	36(5)		
C(2)	15010(30)	22505(16)	-7035(18)	51(8)		
O(1W)	16667	23333	-3730(30)	64(15)		

Pb(1)-Cl(3)	2.798(2)	N(1)-C(3)	1.389(17)
Pb(1)-Cl(2)	2.8305(16)	N(1)-C(2)	1.470(15)
Pb(1)-Cl(1)	2.8426(16)	N(1)-C(1)	1.616(17)
Pb(1)-Cl(4)#1	2.897(2)	N(1)-Cl(3)#6	3.225(10)
Pb(1)-Cl(4)	2.933(3)	N(1)-Cl(4)#7	3.399(11)
Pb(1)-Cl(3)#2	2.951(2)	C(2)-C(3)#8	1.504(17)
Cl(2)-Pb(1)#3	2.8305(16)	C(3)-C(2)#8	1.504(17)
Cl(3)-Pb(1)#4	2.951(2)	C(1)-C(1)#8	1.50(3)
Cl(1)-Pb(1)#5	2.8426(16)	Cl(4)-Pb(1)#9	2.897(2)
Cl(3)-Pb(1)-Cl(2)	84.10(8)	Cl(4)#1-Pb(1)-	83.35(6)
		Cl(4)	
Cl(3)-Pb(1)-Cl(1)	90.12(8)	Cl(3)-Pb(1)-	173.82(4)
		Cl(3)#2	
Cl(2)-Pb(1)-Cl(1)	85.58(8)	Cl(2)-Pb(1)-	98.35(7)
		Cl(3)#2	
Cl(3)-Pb(1)-	81.92(8)	Cl(1)-Pb(1)-	84.43(7)
Cl(4)#1		Cl(3)#2	
Cl(2)-Pb(1)-	87.95(7)	Cl(4)#1-Pb(1)-	103.79(8)
Cl(4)#1		Cl(3)#2	
Cl(1)-Pb(1)-	170.22(6)	Cl(4)-Pb(1)-	85.52(8)
Cl(4)#1		Cl(3)#2	
Cl(3)-Pb(1)-Cl(4)	92.87(8)	Pb(1)#3-Cl(2)-	133.39(14)
		Pb(1)	
Cl(2)-Pb(1)-Cl(4)	171.12(6)	Pb(1)-Cl(3)-	130.45(9)
		Pb(1)#4	
Cl(1)-Pb(1)-Cl(4)	102.81(8)	Pb(1)#5-Cl(1)-	138.16(17)
		Pb(1)	

Symmetry transformations used to generate equivalent atoms: #1 -y+3/2,x-1/2,z-1/4; #2 x+1/2,-y+1/2,-z+1/4; #3 y+1,x-1,-z; #4 x-1/2,-y+1/2,-z+1/4; #5 -y+1,-x+1,-z+1/2; #6 x,y,z+1;#7 -y+3/2,x-1/2,z+3/4; #8 -y+1,-x+1,-z+3/2; #9 y+1/2,-x+3/2,z+1/4.

Table S3

Pb(1)-Br(1)#1	2.959(3)	N(1)-C(1)#1	1.51(3)
Pb(1)-Br(1)	2.959(3)	N(1)-C(1)	1.51(3)
Pb(1)-Br(1)#2	2.959(3)	N(1)-C(1)#2	1.51(3)
Pb(1)-Br(2)#1	3.084(4)	N(1)-O(1W)	2.67(6)
Pb(1)-Br(2)#2	3.084(4)	N(2)-C(2)#1	1.49(3)
Pb(1)-Br(2)	3.084(4)	N(2)-C(2)#2	1.49(3)
Br(1)-N(2)	3.43(4)	N(2)-C(2)	1.49(3)
C(1)-C(2)	1.54(3)	O(1W)-Br(1)#3	3.414(8)
Br(1)#1-Pb(1)-	83.75(9)	Br(1)#1-Pb(1)-	170.48(11)
Br(1)		Br(2)	
Br(1)#1-Pb(1)-	83.75(9)	Br(1)-Pb(1)-	89.18(8)
Br(1)#2		Br(2)	
Br(1)-Pb(1)-	83.75(9)	Br(1)#2-Pb(1)-	89.18(8)
Br(1)#2		Br(2)	
Br(1)#1-Pb(1)-	89.18(8)	Br(2)#1-Pb(1)-	97.10(13)
Br(2)#1		Br(2)	
Br(1)-Pb(1)-	89.18(8)	Br(2)#2-Pb(1)-	97.10(13)
Br(2)#1		Br(2)	
Br(1)#2-Pb(1)-	170.48(11)	Pb(1)-Br(1)-	87.9(5)
Br(2)#1		N(2)	
Br(1)#1-Pb(1)-	89.18(8)	Br(1)#2-Pb(1)-	89.18(8)
Br(2)#2		Br(2)#2	
Br(1)-Pb(1)-	170.48(11)	Br(2)#1-Pb(1)-	97.10(13)
Br(2)#2		Br(2)#2	

Symmetry transformations used to generate equivalent atoms: #1 -y+4,x-y+3,z; #2 - x+y+1,-x+4,z; #3 -x+3,-y+4,z+1/2.