Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2018

Electronic Supplementary Information (ESI) for Dalton Transactions This journal is \mathbb{C} The Royal Society of Chemistry 2018

Supporting Information For

A new quinoline based luminescent Zr(IV) metal-organic framework for the ultrasensitive recognition of 4-nitrophenol and Fe(III) ion

Chiranjib Gogoi and Shyam Biswas *

* To whom correspondence should be addressed. E-mail: sbiswas@iitg.ernet.in; Tel: 91-3612583309.

Figure S1. EDX spectrum of 1'.

Table S1. Structural refinement parameters for 1 obtained from Rietveld refinement.

Formula of	
activated sample	$[Zr_6O_6(OH)_2(CF_3COO)_2(C_{11}H_5NO_4)_4(H_2O)_4]$
crystal system	Orthorhombic
space group	Immm
<i>a</i> / Å	11.673(2)
<i>b</i> / Å	17.688(3)
<i>c</i> / Å	25.498(3)
V/ Å ³	5264(1)
R _{wp} / %	6.1
$R_p / \%$	4.7
R _{Bragg} / %	1.7
GoF	3.3

Figure S2. FE-SEM image of 1.

Figure S3. XRPD patterns of calculated 1, as-synthesized 1 and thermally activated 1'.

Figure S4. FT-IR spectra of 1 (red) and 1' (black).

Figure S5. TG curve of as-synthesized **1** recorded in an argon atmosphere in the temperature range of 25-650 °C with a heating rate of 10 °C/min.

Figure S6. TG curve of activated **1'** recorded in an argon atmosphere in the temperature range of 25-650 °C with a heating rate of 10 °C/min.

Figure S7. XRPD patterns of **1** in different forms: (a) activated; (b) after 5 cycles of fluorescence titration experiments with 4-NP; (c) after 5 cycles of fluorescence titration experiments with Fe³⁺ ions; (d) after treatment with water; (e) after treatment with acetic acid; (f) after treatment with methanol; (g) after treatment with 1(M) HCl; (h) after BET analysis; (i) after treatment with 1(M) NaOH.

 p/p_0 Figure S8. N₂ adsorption (filled circles) and desorption (empty circles) isotherms of thermally activated 1' measured at -196 °C.

Figure S9. Emission spectra of H₂QDA ligand (red, $\lambda_{ex} = 320$ nm) and compound 1' (black, $\lambda_{ex} = 320$ nm) measured in the solid state.

Figure S10. Fluorescence emission spectra of 1' in common organic solvents ($\lambda_{ex} = 320$ nm).

Figure S11. Quenching of the fluorescence intensity of **1'** by incremental addition of 3 mM 2,4-DNP solution to a 3 mL suspension of **1'** in acetonitrile.

Figure S12. Quenching of fluorescence intensity of 1' by incremental addition of 3 mM 2,4-DNT solution to a 3 mL suspension of 1' in acetonitrile.

Figure S13. Quenching of fluorescence intensity of **1'** by incremental addition of 3 mM 2,6-DNT solution to a 3 mL suspension of **1'** in acetonitrile.

Figure S14. Quenching of fluorescence intensity of 1' by incremental addition of 3 mM 2-NP solution to a 3 mL suspension of 1' in acetonitrile.

Figure S15. Quenching of fluorescence intensity of **1'** by incremental addition of 3 mM 3-NP solution to a 3 mL suspension of **1'** in acetonitrile.

Figure S16. Quenching of fluorescence intensity of 1' by incremental addition of 3 mM 4-NT solution to a 3 mL suspension of 1' in acetonitrile.

Figure S17. Quenching of fluorescence intensity of **1'** by incremental addition of 3 mM 1,3-DNB solution to a 3 mL suspension of **1'** in acetonitrile.

Figure S18. Quenching of fluorescence intensity of 1' by incremental addition of 3 mM NB solution to a 3 mL suspension of 1' in acetonitrile.

Figure S19. Quenching of fluorescence intensity of **1'** by incremental addition of 3 mM TNP solution to a 3 mL suspension of **1'** in acetonitrile.

Figure S20. Change in the fluorescence intensity of 1' upon addition of 3 mM 2,4-DNP solution (250 μ L) in presence of 3 mM 4-NP (250 μ L) solution.

Figure S21. Change in the fluorescence intensity of 1' upon addition of 3 mM 2,4-DNT solution (250 μ L) in presence of 3 mM 4-NP (250 μ L) solution.

Figure S22. Change in the fluorescence intensity of 1' upon addition of 3 mM 2,6-DNT solution (250 μ L) in presence of 3 mM 4-NP (250 μ L) solution.

Figure S23. Change in the fluorescence intensity of 1' upon addition of 3 mM 2-NP solution (250 μ L) in presence of 3 mM 4-NP (250 μ L) solution.

Figure S24. Change in the fluorescence intensity of 1' upon addition of 3 mM 3-NP solution (250 μ L) in presence of 3 mM 4-NP (250 μ L) solution.

Figure S25. Change in the fluorescence intensity of 1' upon addition of 3 mM 4-NT solution (250 μ L) in presence of 3 mM 4-NP (250 μ L) solution.

Figure S26. Change in the fluorescence intensity of 1' upon addition of 3 mM 1,3-DNB solution (250 μ L) in presence of 3 mM 4-NP (250 μ L) solution.

Figure S27. Change in the fluorescence intensity of 1' upon addition of 3 mM NB solution (250 μ L) in presence of 3 mM 4-NP (250 μ L) solution.

Figure S28. Change in the fluorescence intensity of 1' upon addition of 3 mM TNP solution $(250 \ \mu\text{L})$ in presence of 3 mM 4-NP $(250 \ \mu\text{L})$ solution.

Figure S29. Effect of other NAEs on the quenching efficiency of 4-NP.

Figure S30. Change of the fluorescence quenching efficiencies upon gradual addition of 3 mM solution of various nitroaromatic explosives to a 3 mL well-dispersed suspension of 1' in acetonitrile.

Figure S31. Recyclability test for the detection of 4-NP by 1'.

Figure S32. Quenching efficiencies of 1'as a function of exposure time.

Figure S33. Stern-Volmer plot for the quenching of **1'** at lower concentrations of 4-NP. Inset: non-linearity of the Stern-Volmer plot at higher concentrations of 4-NP.

Sl.	MOF	$K_{\rm sv}$ (M ⁻¹)	Detection	Medium	Ref.
No.			Limit	Used	
1	$Zr_6O_4(OH)_4(CF_3COO)_4(C_{11}H_5NO_4)_4]$	5.04×10 ⁹	1.01×10 ⁻¹¹ M	acetonitrile	This
	$10H_2O\cdot 3DMF$				work
2	$[Zr_6O_4(OH)_4(2,7-CDC)_6]$	1.40×10^{4}	1.80×10 ⁻⁸ M	THF	1
	$19H_2O \cdot 2DMF$				
3	$[Cu_3(L)_{1.5}(H_2O)_3] \cdot 3DEF \cdot$	3.10×10 ⁶	89.6 ppb	DMSO	2
	20H ₂ O (UPC-21)				
4	Ba ₅ (ADDA) ₅ (EtOH) ₂ (H ₂ O) ₃ ·	6.4×10 ³	2.27×10 ⁻⁷ M	МеОН	3
	5DMF (UPC-17)	8.9×10 ³	2.19×10 ⁻⁷ M	acetone	
		1.26×10 ⁴	1.57×10 ⁻⁷ M	THF	
4	$[Eu_2(L)_2(H_2O)_3] \cdot 2H_2O$	2.20×10 ⁴	-	DMSO	4
5	$[Zr_6O_4(OH)_8(H_2O)_4(CTTA)_{8/3}]$	4.20×10 ⁴	-	water	5
	(BUT-12)				
6	$[Zr_6O_4(OH)_8(H_2O)_4(TTNA)_{8/3}]$	4.70×10^{4}	-	water	
	(BUT-13)				
7	$[Gd_6(L)_3(HL)_2(H_2O)_{10}]$	0.84 ×10 ⁴	1.67 ppm	water	6
	$18H_2O \cdot x(solvent)$				
8	$[Eu_6(L)_3(HL)_2(H_2O)_{10}]$.	-	1.7×10 ⁻⁶ M	water	7
	$10H_2O \cdot x(solvent)$				
9	$[Cd_4(bptc)_2(DMA)_4(H_2O)_2 \cdot 4DMA]$	1.67×10^{5}	0.37 ppm	DMF	8

Table S2. A comparison of the Stern-Volmer constant (K_{sv}), detection limit and medium used for the detection of 4-NP by luminescent MOFs reported till date.

Figure S34. Lifetime decay profile of 1' before and after addition of 300 μ L of 3 mM 4-NP solution.

Table S3. Average excited-state lifetime ($\langle \tau \rangle$) values of 1' before and after addition of 200 µL of 3 mM 4-NP solution ($\lambda_{ex} = 330$ nm).

Volume of PNP	B ₁	B ₂	a ₁	a ₂	τ_1 (ns)	$\tau_2(ns)$	<τ>*	χ^2
added (µL)							(ns)	
0	0.023	0.006	0.36	0.64	0.87	6.30	4.36	1.00
200	0.030	0.004	0.41	0.59	0.46	5.28	3.29	1.00
4								

 $* < \tau > = a_1 \tau_1 + a_2 \tau_2$

Figure S35. Fluorescence intensity of 1' in acetonitrile as a function of 4-NP concentration.

Figure S36. HOMO and LUMO energies for the nitroaromatic explosives.

Table S4. HOMO and LUMO energy levels of selected analytes calculated by density functional theory (DFT) at B3LYP/6-31G* accuracy level using Gaussian 09 package of program.²²

Analytes	HOMO (eV)	LUMO (eV)	Band Gap (eV)
TNP	-8.2374	-3.898	4.3394
2,4-DNP	-7.6644	-2.8202	4.8442
4-NP	-6.9207	-2.2213	4.6994
4-NT	-7.3626	-2.3171	5.0455
2,4-DNT	-8.1131	-2.9769	5.1362
2,6-DNT	-7.8913	-2.8501	5.0412
1,3-DNB	-8.4129	-3.135	5.2779
NB	-7.5917	-2.4294	5.1623

Figure S37. Overlap between the absorption spectra of the nitroaromatic explosives and the emission spectrum of the acetonitrile suspension of 1'.

Figure S38. Change in the fluorescence intensity of 1' upon incremental addition of 10 mM Al³⁺ solution in water.

Figure S39. Change in the fluorescence intensity of 1' upon incremental addition of 10 mM Cd²⁺ solution in water.

Figure S40. Change in the fluorescence intensity of **1'** upon incremental addition of 10 mM Co²⁺ solution in water.

Figure S41. Change in the fluorescence intensity of 1' upon incremental addition of 10 mM Cr^{3+} solution in water.

Figure S42. Change in the fluorescence intensity of 1' upon incremental addition of 10 mM Cu²⁺ solution in water.

Figure S43. Change in the fluorescence intensity of 1' upon incremental addition of 10 mM Fe^{2+} solution in water.

Figure S44. Change in the fluorescence intensity of 1' upon incremental addition of 10 mM Hg²⁺ solution in water.

Figure S45. Change in the fluorescence intensity of **1'** upon incremental addition of 10 mM K⁺ solution in water.

Figure S46. Change in the fluorescence intensity of 1' upon incremental addition of 10 mM Mn^{2+} solution in water.

Figure S47. Change in the fluorescence intensity of 1' upon incremental addition of 10 mM Na⁺ solution in water.

Figure S48. Change in the fluorescence intensity of 1' upon incremental addition of 10 mM Pb²⁺ solution in water.

Figure S49. Change in the fluorescence intensity of 1' upon incremental addition of 10 mM Ni²⁺ solution in water.

Figure S50. Change in the fluorescence intensity of 1' upon incremental addition of 10 mM Zn^{2+} solution in water.

Figure S51. Change in the fluorescence intensity of 1' upon addition of 10 mM Al³⁺ solution (500 μ L) in presence of 10 mM Fe³⁺ (500 μ L) solution in water.

Figure S52. Change in the fluorescence intensity of 1' upon addition of 10 mM Cd²⁺ solution (500 μ L) in presence of 10 mM Fe³⁺ (500 μ L) solution in water.

Figure S53. Change in the fluorescence intensity of 1' upon addition of 10 mM Co²⁺ solution (500 μ L) in presence of 10 mM Fe³⁺ (500 μ L) solution in water.

Figure S54. Change in the fluorescence intensity of 1' upon addition of 10 mM Cr^{3+} solution (500 µL) in presence of 10 mM Fe³⁺ (500 µL) solution in water.

Figure S55. Change in the fluorescence intensity of **1'** upon addition of 10 mM Fe²⁺ solution (500 μ L) in presence of 10 mM Fe³⁺ (500 μ L) solution in water.

Figure S56. Change in the fluorescence intensity of 1' upon addition of 10 mM Hg²⁺ solution (500 μ L) in presence of 10 mM Fe³⁺ (500 μ L) solution in water.

Figure S57. Change in the fluorescence intensity of 1' upon addition of 10 mM K⁺ solution (500 μ L) in presence of 10 mM Fe³⁺ (500 μ L) solution in water.

Figure S58. Change in the fluorescence intensity of 1' upon addition of 10 mM Mn^{2+} solution (500 µL) in presence of 10 mM Fe³⁺ (500 µL) solution in water.

Figure S59. Change in the fluorescence intensity of 1' upon addition of 10 mM Na⁺ solution (500 μ L) in presence of 10 mM Fe³⁺ (500 μ L) solution in water.

Figure S60. Change in the fluorescence intensity of 1' upon addition of 10 mM Ni²⁺ solution (500 μ L) in presence of 10 mM Fe³⁺ (500 μ L) solution in water.

Figure S61. Change in the fluorescence intensity of **1'** upon addition of 10 mM Pb²⁺ solution (500 μ L) in presence of 10 mM Fe³⁺ (500 μ L) solution in water.

Figure S62. Change in the fluorescence intensity of 1' upon addition of 10 mM Zn²⁺ solution (500 μ L) in presence of 10 mM Fe³⁺ (500 μ L) solution in water.

Figure S64. Change in the fluorescence intensity of 1' in HEPES buffer (10 mM, pH = 7.4) upon incremental addition of 10 mM Fe³⁺ solution.

Figure S65. The fluorescence quenching efficiencies of various metal cations (500 μ L of 10 mM solution) towards **1'** suspended in HEPES buffer (10 mM, pH = 7.4).

Figure S66. Effect of other metal cations on the quenching efficiency of Fe^{3+} ion in HEPES buffer (10 mM, pH = 7.4).

Figure S67. Reproducibility test for the aqueous suspension of 1' towards sensing of Fe³⁺ ion.

Figure S68. Quenching efficiencies of 1'as a function of exposure time in water.

Figure S69. Change of fluorescence quenching efficiencies upon gradual addition of 10 mM solution of various metal cations to a 3 mL well-dispersed suspension of 1' in water.

Figure S70. Quenching efficiencies of 1' in HEPES buffer (10 mM, pH = 7.4) as a function of exposure time.

Figure S71. Stern-Volmer plot for the quenching of **1**' at lower concentrations of Fe^{3+} ion in water. Inset: non linearity of the Stern-Volmer plot at higher concentrations of Fe^{3+} ion.

HEPES buffer (10 mM, pH=7.4).

Table S5. A comparison of the Stern-Volmer constant (K_{sv}), detection limit and medium used for Fe³⁺ detection for MOFs reported till date.

Sl.	MOF	$K_{\rm sv}$ (M ⁻¹)	Detection	Medium	Ref.
No.			Limit	Used	
1.	$[Zr_6O_6(OH)_2(CF_3COO)_2(C_{11}H_5NO_4)_4($	2.25×10 ⁷	1.7×10 ⁻⁹ M	Water	This
	$[H_2O)_4]$				work
2.	$[Zr_6O_6(OH)_2(CF_3COO)_2(C_{11}H_5NO_4)_4($	1.91×10 ⁷	2.7×10 ⁻⁹ M	HEPES	This
	H ₂ O) ₄]			buffer	work
3.	$[La(TPT)(DMSO)_2] \cdot H_2O$	1.36×10 ⁴	-	ethanol	9
4.	$[H(H_2O)_8][DyZn_4(imdc)_4(im)_4]$	2.88×10 ⁴	-	DMSO	10
5.	EuL ₃	4.1×10 ³	10-4 M	ethanol	11
6.	$[Eu_2(MFDA)_2(HCOO)_2(H_2O)_6] \cdot H_2O$	-	3.3×10 ⁻⁷ M	DMF	12
7.	$[Cd(H_2L_a)_{0.5}(H_2L_b)_{0.5}(H_2O)]$	-	10 ⁻⁵ M	water	13
8.	$[(CH_3)_2NH_2] \cdot [Tb(bptc)] \cdot x$ solvents	-	72.76 ppm	ethanol	14
9.	$[Ln_2(Ccbp)_3 \cdot 6H_2O] \cdot 3Cl^- \cdot 4H_2O$	1.143×10 ⁵	-	ethanol	15
10.	Eu ³⁺ @MIL-124	3.87×10 ⁴	0.28×10-6	water	16
	-		М		
11.	MIL-53(Al)	-	0.9×10 ⁻⁶ M	PBS	17
				buffer	
12.	$[Ln(Hpzbc)_2(NO_3)] \cdot H_2O$	-	2.6×10 ⁻⁵ M	ethanol	18
13.	$[Tb(BTB)(DMF)] \cdot 1.5DMF \cdot 2.5H_2O$	-	10 ⁻⁵ M	ethanol	19

14.	$[Tb_4(OH)_4(DSOA)_2(H_2O)_8] \cdot (H_2O)_8$	3.5×10 ⁴	-	water	20
15.	Tb ³⁺ @Cd-MOF	1.108×10 ⁵	0.010 mM	DMF	21
16.	$[Zr_6O_4(OH)_4(2,7-CDC)_6]$	5.5×10 ³	9.10×10-7	water	1
	$19H_2O\cdot 2DMF$		M		

Figure S73. Lifetime decay profile of 1' before and after addition of 200 μL of 10 mM Fe^{3+} solution in water.

Table S6. Average excited state lifetime ($\langle \tau \rangle$) values of 1' before and after addition of 300 µL of 10 mM Fe³⁺ solution ($\lambda_{ex} = 330$ nm).

Volume of	B ₁	B ₂	a ₁	a ₂	τ_1 (ns)	τ_2 (ns)	<τ>*	χ^2
Fe ³⁺ solution							(ns)	
added (µL)								
0	0.068	0.014	0.10	0.90	0.35	14.68	13.20	1.09
300	0.144	0.002	0.69	0.31	0.22	7.99	2.60	0.92

 $* < \tau > = a_1 \tau_1 + a_2 \tau_2$

Figure S74. Fluorescence intensity of 1' in water as a function of Fe³⁺ concentration.

Figure 75. Fluorescence intensity of **1'** in HEPES buffer (10 mM, pH = 7.4) as a function of Fe^{3+} concentration.

Figure S76. EDX spectrum of 1' after treatment with 10 mM Fe³⁺ aqueous solution.

Figure S77. UV-Vis absorption spectra of the aqueous solutions containing different metal ions $(10 \times 10^{-3} \text{ M})$. The emission spectra of 1' (pink color) (3 mg) dispersed in water (3 mL).

Calculated Crystallographic Information File (CIF) for compound 1:

```
data compound 1
chemical name mineral ??
cell length a 11.6730(20)
_cell_length_b 17.6881(29)
cell length c 25.4979(34)
cell angle alpha 90
_cell_angle_beta
                  90
_cell_angle_gamma 90
cell volume 5264.6(14)
 symmetry space group name H-M IMMM
loop
_symmetry_equiv_pos_as_xyz
     '-x, -y, -z'
     '-x, -y, z'
     '-x, y, -z'
     '-x, y, z'
     'x, -y, -z'
     'x, -y, z'
     'x, y, -z'
     'x, y, z'
     '-x+1/2, -y+1/2, -z+1/2'
     -x+1/2, -y+1/2, z+1/2'
     '-x+1/2, y+1/2, -z+1/2'
     '-x+1/2, y+1/2, z+1/2'
     x+1/2, -y+1/2, -z+1/2
     'x+1/2, -y+1/2, z+1/2'
     'x+1/2, y+1/2, -z+1/2'
     'x+1/2, y+1/2, z+1/2'
loop
atom site label
_atom_site_type_symbol
_atom_site_symmetry_multiplicity
atom site fract x
_atom_site_fract y
atom site fract z
atom site occupancy
atom site B iso or equiv
Zr1 Zr 0 0 0 0.09509(43) 1 0.80(24)
01 0 0 0.1026(29) 0.0473(14) 1 0.80(66)
      0 0.1493(37) 0 -0.0465(16) 1 0.80(66)
02 0
Zr2 Zr 0 0.15111(89) 0.10628(57) 0 1 0.80(24)
03 0 0.1161(27) 0.2336(27) 0 1 0.80(66)
       0 0.3480(40) 0.0809(14) 0 1 0.80(66)
04 0
05 0
     0 0.2078(13) 0.15107(91) 0.07189(56) 1 0.80(66)
06 0
     0 0.1105(15) 0.0851(11) 0.13729(74) 1 0.80(66)
C1 C
     0 0.1754275 0.1349718 0.1177686 1 0.80(90)
C2 C 0 0.2191206 0.1829315 0.1620391 1 0.80(90)
C3 C 0 0.2979756 0.2418603 0.1534018 1 0.80(90)
C4 C
       0 0.3336952 0.2890573 0.1947299 1 0.80(90)
```

```
C5 C
       0 0.2906671 0.2787477 0.2455273 1 0.80(90)
N6 N
       0 0.1762682 0.1728096 0.2134025 0.5 0.80(90)
C6 C
       0 0.1762682 0.1728096 0.2134025 0.5 0.80(90)
       0 0 0.5 0.5978(25) 1.000(71) 2.2(15)
G1 O
G2 O
       0 0.514(18) 0.1117(35) 0.6510(16) 0.500(25) 2.2(15)
G3 O
       0 0 0.5 0.3110(23) 1.000(64) 2.2(15)
       0 0.5562(59) 0.1790(40) 0.4109(20) 0.500(30) 2.2(15)
G4 O
G5 O
       0 0 0.3220(62) 0.4431(35) 0.465(50) 2.2(15)
```

References:

- 1. A. Das and S. Biswas, Sens. Actuator B-Chem, 2017, 250, 121-131.
- 2. M. Zhang, L. Zhang, Z. Xiao, Q. Zhang, R. Wang, F. Dai and D. Sun, *Sci. Rep.*, 2016, 6, 20672-20681.
- 3. R. Wang, X. Liu, A. Huang, W. Wang, Z. Xiao, L. Zhang, F. Dai and D. Sun, *Inorg. Chem.*, 2016, **55**, 1782–1787.
- 4. X. Wang, L. Zhang, J. Yang, F. Liu, F. Dai, R. Wanga and D. Sun, J. Mater. Chem. A, 2015, **3**, 12777–12785.
- 5. B. Wang, X.-L. Lv, D. Feng, L.-H. Xie, J. Zhang, M. Li, Y. Xie, J.-R. Li and H.-C. Zhou, *J. Am. Chem. Soc*, 2016, **138**, 6204–6216.
- 6. Q.-H. Tan, Y.-Q. Wang, X.-Y. Guo, H.-T. Liu and Z.-L. Liu, *RSC Adv.*, 2016, **6**, 61725–61731.
- 7. Y.-Q. Wang, Q.-H. Tan, H.-T. Liu, W-Sun and Z.-L. Liu, *RSC Adv.*, 2015, **5**, 86614-86619.
- 8. X.-P. Wang, L.-L. Han, Z. Wang, L.-Y. Guo and D. Sun, J. Mol. Struct., 2016, 1107, 1-6.
- 9. C. Zhang, Y. Yan, Q. Pan, L. Sun, H. He, Y. Liu, Z. Liang and J. Li, *Dalton Trans.*, 2015, **44**, 13340–13346.
- 10. Y.-F. Li, D. Wang, Z. Liao, Y. Kang, W.-H. Ding, X.-J. Zheng and L.-P. Jin, J. Mater. Chem. C, 2016, 4, 4211-4217.
- 11. M. Zheng, H. Tan, Z. Xie, L. Zhang, X. Jing and Z. Sun, *ACS Appl. Mater. Interfaces*, 2013, **5**, 1078–1083.
- 12. X.-H. Zhou, L. Li, H.-H. Li, A. Li, T. Yanga and W. Huang, *Dalton Trans.*, 2013, **42**, 12403–12409.
- 13. Y. Wu, G.-P. Yang, Y. Zhang, N. Shi, J. Han and Y.-Y. Wang, *RSC Adv.*, 2015, 5, 90772-90777.
- 14. X.-L. Zhao, D. Tian, Q. Gao, H.-W. Sun, J. Xu and X.-H. Bu, *Dalton Trans.*, 2016, **45**, 1040–1046.
- 15. K.-M. Wang, L. Du, Y.-L. Ma, J.-S. Zhao, Q. Wang, T. Yan and Q.-H. Zhao, *CrystEngComm*, 2016, **18**, 2690–2700.
- 16. X.-Y. Xu and B. Yan, *ACS Appl. Mater. Interfaces*, 2014, 7, 721-729.
- 17. C.-X. Yang, H.-B. Ren and X.-P. Yan, *Anal. Chem.*, 2013, **85**, 7441–7446.
- 18. G.-P. Li, G. Liu, Y.-Z. Li, L. Hou, Y.-Y. Wang and Z. Zhu, *Inorg. Chem.*, 2016, 55, 3952-3959.
- 19. H. Xu, H.-C. Hu, C.-S. Cao and B. Zhao, *Inorg. Chem.*, 2015, **54**, 4585–4587.

- 20. X.-Y. Dong, R. Wang, J.-Z. Wang, S.-Q. Zang and T. C. W. Mak, J. Mater. Chem. A, 2015, **3**, 641–647.
- 21. H. Weng and B. Yan, Sens. Actuator B-Chem., 2016, 228, 702–708.

22. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; J. A. Montgomery, J.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J., *Gaussian 09, Revision A.1.* Gaussian, Inc.: Wallingford CT, **2009**.