Impact of copper and iron binding properties on the anticancer activity of 8-hydroxyquinoline derived Mannich bases

Veronika F.S. Pape^{a,†}, Nóra V. May^b, G. Tamás Gál^b, István Szatmári^c, Flóra Szeri^{a,§}, Ferenc Fülöp^c, Gergely Szakács ^{a,f,*}, Éva A. Enyedy^{e,*}

^a Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of

Sciences, Magyar Tudósok körútja 2, H-1117 Budapest, Hungary

^bResearch Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar Tudósok

körútja 2, H-1117 Budapest, Hungary

^c Institute of Pharmaceutical Chemistry and Stereochemistry Research Group of Hungarian

Academy of Sciences, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary

^d Institute of Cancer Research, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria

^e Department of Inorganic and Analytical Chemistry, Interdisciplinary Excellence Centre,

University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary

[†] Present address: Department of Physiology, Semmelweis University, Faculty of Medicine,

Tűzoltó utca 37-47, H-1094 Budapest, Hungary

[§] Present address: Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, 233 S. 10th Street, 19107 Philadelphia (PA), USA.

Table S1. Crystal data and structure refinement parameters for Q-3, Q-4·HCl·H₂O, $[(Cu(HQ-2)_2)_2] \cdot (CH_3OH)_2 \cdot Cl_4 \cdot (H_2O)_2$, $[Cu(Q-3)_2] \cdot Cl_2$ and $[Cu(HQ-4)_2(CH_3OH)] \cdot ZnCl_4 \cdot CH_3OH$.

	0-3	O-4 ·HCl·H ₂ O	$[(Cu(HQ-2)_2)_2]$	$[Cu(0-3)_{c}]\cdot Cl_{c}$	[Cu(H Q-4) ₂
	Q-5	Q-4 IICI II ₂ O	$(CH_3OH)_2 \cdot Cl_4 \cdot (H_2O)_2$		(CH ₃ OH)]·ZnCl ₄ ·CH ₃ OH)
CCDC number	1575107	1575108	1575109	1575110	1575111
Color/Shape	Colorless/ Chunk	Green/ Chunk	Green/ Chip	Orange/ Block	Green/Block
Empirical formula	С Ц N О	C ₁₇ H ₁₅ ClFN ₂ O,	$[(Cu(C_{14}H_{16}N_2O_2)_2)_2]$	$[C_{\nu}(C, H, N, O), 1, (C)]$	$[Cu(C_{17}H_{14}ClFN_2O)_2$
Empirical formula	$C_{15} \Gamma_{18} \Gamma_{2} O$	Cl, H ₂ O	(CH ₃ OH) ₂ , (Cl) ₄ , (H ₂ O) ₂	$[Cu(C_{15}\Pi_{17}\Pi_{2}O)_{2}](CI)_{2}$	(CH ₃ OH)] ZnCl ₄ , CH ₃ OH
Empirical formula	C ₁₅ H ₁₈ N ₂ O	C ₁₇ H ₁₇ Cl ₂ FN ₂ O ₂	$C_{58}H_{76}Cl_4Cu_2N_8O_{12}$	$C_{30}H_{36}Cl_2CuN_4O_2$	$C_{36}H_{36}Cl_6CuF_2N_4O_4Zn$
Formula weight	242.31	371.22	1346.14	619.07	968.30
Temperature (K)	293(2)	293(2)	293(2)	293(2)	103(2)
Radiation, wavelength (Å)	Μο-Κα, 0.71073	Μο-Κα, 0.71073	Μο–Κα, 0.71073	Cu–Kα, 1.54187	Μο-Κα, 0.71073
Crystal system	orthorhombic	triclinic	monoclinic	monoclinic	triclinic
Space group	$P2_{1}2_{1}2_{1}$	<i>P</i> -1	C2/c	$P2_{1}/n$	<i>P</i> -1
Unit cell dimensions					
	8.9362(7),	7.0220(3),	25 0247(10) 10 5428(7)	6.5336(2),	11.8498(12),
a, b, c (Å)	11.4735(10),	9.4970(5),	23.0347(17), 10.3428(7),	10.8906(4),	12.9144(11),
	12.7458(11)	13.8230(6)	25.7514(17)	20.7810(7)	14.7891(17)
	90,	95.430(2),	90,	90,	76.700(3),
α, β, γ (°)	90,	101.7900(10),	93.299(2),	91.408(2),	72.214(3),
	90.	99.440(2).	90.	90.	67.890(3).
Volume (Å ³)	1306.8(2)	882.29(7)	6258.5(8)	1478.22(9)	1979.5(4)
Z/Z'	4/1	2/1	4/1	2/0.5	2/1
Density (calc.) (Mgm ⁻³)	1.232	1.397	1.429	1.391	1.625
Abs. coeff. (mm ⁻¹)	0.078	0.389	0.916	2.973	1.602
F(000)	520	384	2808	646	982

Crystal size (mm)	$0.3 \times 0.3 \times 0.25$	$0.50 \times 0.50 \times 0.30$	$0.25 \times 0.25 \times 0.25$	$0.25 \times 0.1 \times 0.1$	$0.25 \times 0.25 \times 0.1$
Absorption correction	Numerical	Numerical	Numerical	Numerical	Multi-scan
Min. and max. transmission	0.9629, 1.0000	0.5925, 0.8590	0.7803, 0.8816	0.6680, 0.9085	0.6809, 1.0000
θ–range for data collection (°)	$3.197 \le \theta \le 27.397$	$3.017 \le \theta \le 27.436$	$3.116 \le \theta \le 25.326$	$7.057 \le \theta \le 58.881$	$3.076 \le \theta \le 27.481$
Index ranges	$-11 \le h \le 11;$ $-14 \le k \le 14;$ $-16 \le l \le 16.$	$-9 \le h \le 9;$ - $12 \le k \le 12;$ - $17 \le l \le 17.$	$-30 \le h \le 30;$ $-12 \le k \le 12;$ $-28 \le l \le 28$	$-7 \le h \le 5;$ $-12 \le k \le 12;$ $-22 \le l \le 20$	$-15 \le h \le 15; -16 \le k \le 16;$ $-19 \le l \le 19$
No. reflections collected	41004	34133	69245	10477	60741
Completeness to 20	0.998	0.999	0.998	0.937	0.995
No. independent reflections (R _{int})	2956 (0.0457)	4014 (0.0357)	5720 (0.1184)	1982 (0.0704)	8981 (0.0582)
Reflections $I > 2\sigma(I)$	2309	3421	4123	1233	6884
Refinement method	full-matrix least-square	es on F^2			
Data / restraints / parameters	2956 /0 /168	4014 /0 /229	5720 /0 /398	1982 /0 /178	8981 /0 /497
Goodness-of-fit on F2	1.119	1.062	1.067	1.134	1.137
Final <i>R</i> indices $[I > 2\sigma(I)]$ R ₁ , wR ₂	0.0527, 0.1402	0.0385, 0.1021	0.0683, 0.1236	0.0965, 0.1839	0.0454, 0.0983
R indices (all data) R_1 , w R_2	0.0643, 0.1493	0.0452, 0.1078	0.1015, 0.1417	0.1542, 0.2482	0.0686, 0.1261
Max. and mean shift/esd	0.002; 0.000	0.000;0.000	0.000; 0.000	0.000; 0.000	0.001;0.000
Largest diff. peak and hole (e.Å ⁻³)	0.170; -0.158	0.264; -0.175	0.578; -0.431	0.469; -0.459	0.738;-0.963

	Bond lengths (Å)		angles (°)
O1-C8	1.370(3)	C8-C7-C6	119.4(2)
C7-C6	1.411(4)	C6-C7-C9	120.3(2)
N10-C11	1.461(3)	C11-N10-C15	109.8(2)
N10-C15	1.477(4)	C2-N1-C8A	116.8(2)
N1-C8A	1.364(3)	N1-C8A-C8	118.8(2)
C8A-C8	1.430(3)	O1-C8-C7	121.6(2)
C4A-C5	1.418(4)	C7-C8-C8A	120.6(2)
C2-C3	1.398(4)	C4-C4A-C8A	117.4(2)
C13-C14	1.503(5)	C5-C6-C7	122.3(2)
C4-C3	1.357(4)	C6-C5-C4A	118.9(2)
C7-C8	1.373(3)	N10-C11-C12	111.7(2)
C7-C9	1.520(4)	C3-C4-C4A	119.7(3)
N10-C9	1.473(3)	C11-C12-C13	110.7(3)
N1-C2	1.326(4)	C13-C14-C15	111.4(3)
C8A-C4A	1.420(3)	C8-C7-C9	120.1(2)
C4A-C4	1.412(4)	C11-N10-C9	110.3(2)
C6-C5	1.369(4)	C9-N10-C15	110.8(2)
C11-C12	1.510(4)	N1-C8A-C4A	122.7(2)
C13-C12	1.518(5)	C4A-C8A-C8	118.6(2)
C15-C14	1.506(6)	O1-C8-C8A	117.8(2)
		C4-C4A-C5	122.4(3)
		C5-C4A-C8A	120.2(2)
		N10-C9-C7	112.7(2)
		N1-C2-C3	124.8(3)
		C14-C13-C12	109.7(3)
		N10-C15-C14	111.5(3)
		C4-C3-C2	118.6(3)

Table S2. Bond lengths (Å) and angles (°) in Q-3.

Х-НҮ	symmetry	X-H [Å]	HY [Å]	XY [Å]	X-HY [°]
	operation				
O1-H1ON10	intra	1.01(5)	1.67(5)	2.658(3)	164(4)
C2-H2O1	2-x,-1/2+y,1/2-z	0.93	2.67	3.597(4)	177
C11-H11BCg(B)	-1/2+X,3/2-Y,1-Z	0.97	2.63	3.550(3)	159
C12-H12ACg(A)	1-X,-1/2+Y,1/2-Z	0.97	2.91	3.771(4)	149
C13-H13ACg(B)	1-X,-1/2+Y,1/2-Z	0.97	2.96	3.663(4)	130

 Table S3. Selected intra- and intermolecular X-H...Y interactions in Q-3.

Table S4. Bond lengths (Å) and angles (°) in Q-4·HCl·H₂O.

	Bond lengths (Å)		angles (°)
Cl1-C5	1.742(2)	C2-N1-C8A	117.4(1)
O1-C8	1.350(2)	N1-C2-C3	123.7(2)
N1-C8A	1.364(2)	C3-C4-C4A	119.6(2)
N10-C11	1.504(2)	C4-C4A-C8A	116.9(1)
C3-C4	1.354(3)	C6-C5-C4A	121.8(1)
C4A-C5	1.417(2)	C4A-C5-Cl1	119.2(1)
C5-C6	1.362(2)	C8-C7-C6	119.9(1)
C7-C8	1.372(2)	C6-C7-C9	120.1(1)
C8-C8A	1.424(2)	O1-C8-C8A	121.5(1)
C12-C13	1.378(2)	N1-C8A-C4A	122.8(1)
C13-C14	1.377(3)	C4A-C8A-C8	119.3(1)
C15-C16	1.375(3)	C12-C11-N10	112.6(1)
F1-C13	1.352(2)	C13-C12-C11	121.6(1)
N1-C2	1.322(2)	F1-C13-C14	118.3(2)
N10-C9	1.492(2)	C14-C13-C12	123.7(2)
C2-C3	1.401(2)	C14-C15-C16	120.7(2)
C4-C4A	1.416(2)	C16-C17-C12	120.9(2)
C4A-C8A	1.421(2)	C9-N10-C11	113.8(1)
C6-C7	1.412(2)	C4-C3-C2	119.5(2)
С7-С9	1.503(2)	C4-C4A-C5	125.1(1)

C11-C1	2 1.503(2)	C5-C4A-C8A	118.0(1)
C12-C1	7 1.387(2)	C6-C5-Cl1	119.0(1)
C14-C1	5 1.370(3)	C5-C6-C7	120.3(1)
C16-C1	7 1.381(3)	C8-C7-C9	119.9(1)
		O1-C8-C7	117.8(1)
		C7-C8-C8A	120.7(1)
		N1-C8A-C8	117.9(1)
		N10-C9-C7	111.7(1)
		C13-C12-C17	116.7(1)
		C17-C12-C11	121.7(1)
		F1-C13-C12	118.0(2)
		C15-C14-C13	118.0(2)
		C15-C16-C17	120.1(2)

Table S5. Selected intermolecular X-H...Y interactions in Q-4·HCl·H2O.

Х-НҮ	symmetry operation	X-H [Å]	HY [Å]	XY [Å]	X-HY [0]
N10-H10BO1	Intra	0.89	2.72	3.2053(16)	115
O2-H2OCl2		0.85(3)	2.35(3)	3.1802(15)	168(3)
N10-H10AO2		0.89	1.93	2.7923(18)	164
N10-H10BCl2	-1+x,y,z	0.89	2.36	3.1314(13)	145
01-H10N1	-x,1-y,1-z	0.80(2)	2.15(2)	2.8073(18)	141(2)
O2-H2WCl2	1-x,1-y,-z	0.78(3)	2.37(3)	3.1397(17)	169(3)
С2-Н2О1	-x,1-y,1-z	0.93	2.50	3.001(2)	114
C14-H14O2	x,-1+y,z	0.93	2.64	3.477(2)	150

Table S6. λ_{max} (nm) and molar absorptivity (M⁻¹cm⁻¹) values for the ligand species of the studied 8hydroxyquinolines in the different protonation forms determined by UV-Vis spectrophotometric titrations, as well as the determined proton dissociation constants (p K_a). (T = 25 °C, I = 0.20 M (KCl))

	Q-1	Q-2	Q-3	Q-4
H ₃ L ^b	-	308 nm (2750)	-	_
		318 nm (2945)		
		336 nm (2120)		
$H_2L^{\ b}$	308 nm (3320) ^a	302 nm (2420)	308 nm (2790)	326 nm (2800)
	318 nm (3420) ^a	424 nm (425)	320 nm (2970)	390 nm (730)
	358 nm (3370) ^a		340 nm (2190)	
HL ^b	306 nm (4914) ^a	312 nm (2360)	304 nm (2790)	342 nm (2370)
			428 nm (380)	402 nm (1580)
${f L}$ b	334 nm (5560) ^a	338 nm (3760)	336 nm (4000)	342 nm (2080)
	354 nm (~5500) ^a	358 nm (2800)		398 nm (1400)
$\mathbf{p}\mathbf{K}_1$	4.99 ^a	2.59±0.05	2.69±0.02	5.16±0.05
р <i>К</i> 2	9.51 ^a	6.25±0.06	6.99±0.01	8.54±0.05
р <i>К</i> 3	-	10.37±0.06	-	_

^a Data taken from Ref. [É. A. Enyedy, O. Dömötör, E. Varga, T. Kiss, R. Trondl, C. G. Hartinger and B. K. Keppler, J. Inorg. Biochem., 2012, **117**, 189–197.] ^b Charges are omitted for clarity.

	Q-1	Q-2	Q-3	Q-4 ^b
[FeLH]	_	628 nm (630)	_	_
		452 nm (280)		
[FeL]	650 nm ^a	592 nm (884)	636 nm (1020)	_
		444 nm (1010)	456 nm (580)	
[FeL ₂ H ₂]	_	_	_	_
[FeL ₂ H]	_		_	_
		604 nm (2535)		
		448 nm (1940)		
[FeL ₂]	625 nm ^a	-	588 nm (2960)	_
			448 nm (3015)	
[FeL ₃ H]	_	576 nm (3750)	_	_
		452 nm (3973)		
[FeL ₃]	575 nm ^a	576 nm (3750)	572 nm (4250)	_
		444 nm (4000)	440 nm (5200)	
[CuLH]				382 nm (2561)
[CuL]	_	374 nm (1980)	362 nm (1850)	426 nm (2252)
[CuL ₂ H ₂]	—	_	_	390 nm (6397)
[CuL ₂ H]	-	372 nm (5793)	_	430 nm (5250)
[CuL ₂]	_	382 nm (4970)	374 nm (5250)	_

Table S7. λ_{max} (nm) and molar absorptivity (M⁻¹cm⁻¹) values for the iron(III) and copper(II) complexes of **Q-1** to **Q-4.** (*T* = 25 °C, *I* = 0.20 M (KCl)) (Charges of the complexes are omitted for clarity.)

^a Data taken from Ref. [T. D. Turnquist and E. B. Sandell, Anal. Chim. Acta, 1968, **42**, 239–245.] ^b No detectable CT or d-d bands, only ligand bands were used for calculations due to the highly diluted

conditions.

Ligan		~	~	~	$A_{\rm x}$	$A_{\rm y}$	A_{z}	$a_{\rm Nx}$	$a_{\rm Ny}$	$a_{\rm Nz}$	ratio
d		g _x	gy	8 _z	/G	/G	/G	/G	/G	/G	%
Q-1	monome	2.039	2.058	2.256	17	16	168	13.1	13.1	9.0	100
Q-2	r monome	2.040	2.044	2.235	28	5	184	-13.0 14.0	_13.0 14.0	9.0 9.1	100
Q-3	r monome	2.051	2.070	2.287	13	1	151	-14.0 13.0	_14.0 12.6	8.6 9.0	25
	r dimer ^b	2.023	2.052	2.220	0	25	186	13.4	14.4	9.0	75
Q-4	monome	2.051	2.070	2.287	13	1	151	13.0	12.6	9.0	10
	r dimer ^b	2.023	2.052	2.220	0	25	186	13.4	14.4	9.0	90

Table S8. Anisotropic EPR parameters for *bis*-ligand copper(II) complexes of **Q-1**, **Q-2**, **Q-3** and **Q-4** in frozen solutions (77 K) ^a

^a The experimental errors were ± 0.001 for g_x, g_y and $g_z, \pm 1$ G for A_x, A_y, A_z and a_{Nx}, a_{Ny}, a_{Nz} .

and

^b Further EPR parameters used in the simulation: $\chi = 28.5^{\circ}$, $\psi = -5.0^{\circ}$; dipolar coupling D = 335.5 G; spin-exchange coupling J> 1500 G; Euler angles $\alpha = 0^{\circ}$, $\beta = 3.3^{\circ}$, $\gamma = -5^{\circ}$. From the dipolar coupling the copper-copper distance 3.88Å can be calculated by using point-dipole approach.

X-H...Y

interactions

intermolecular

$(CH_{3}OH)_{2}$	$H_4 \cdot (H_2 O)_2.$				
Х-НҮ	symmetry operation	X-H [Å]	HY [Å]	XY [Å]	X-HY [°]
С9-Н9АО1	Intra	0.97	2.52	2.913(5)	104
С29-Н29ВО1	Intra	0.97	2.58	3.289(5)	130
С29-Н29ВО11	Intra	0.97	2.53	2.889(5)	102
O6-H6OCl1		0.82	2.41	3.162(7)	152
N10-H10Cl2		0.84(4)	2.27(4)	3.082(4)	165(4)
N30-H30O5		0.94(5)	1.69	2.631(5)	176(4)
C11-H11BCl1		0.97	2.75	3.639(5)	153
С35-Н35ВО6		0.97	2.33	3.285(9)	167
C14-H14ACl3		0.97	2.73	3.517(5)	139
С31-Н31АО13	1/2-x,-1/2+y,1/2-z	0.97	2.56	3.351(6)	138
O5-H5OCl3	x,-1+y,z	0.85(6)	2.21(6)	3.051(5)	167(6)

 $\mathbf{2}_{2}_{2}_{2}$ $(CH_{3}OH)_{2} \cdot Cl_{4} \cdot (H_{2}O)_{2}$.

intra-

Selected

Table S9.

[(Cu(H**Q**-

in

O5-H5WCl3	1/2-x,-1/2+y,1/2-z	0.88(5)	2.19(5)	3.059(5)	171(4)
C11-H11ACl3	1/2-x,-1/2+y,1/2-z	0.97	2.79	3.679(5)	153

 $\textbf{Table S10}. \ Selected \ intermolecular \ X-H\ldots Y \ interactions \ in \ [Cu(\textbf{Q-3})_2] \cdot Cl_2.$

Х-НҮ	symmetry	X-H [Å]	HY [Å]	XY [Å]	X-HY [°]
	operation				
С2-Н2О1	Intra	0.97	2.68	3.139(12)	111
N10-H10Cl1	1+x,y,z	0.98	2.12	3.085(8)	169
C14-H14BCl1		0.95	2.79	3.721(10)	162
C2-H2Cl1		0.93	2.86	3.538(10)	130
C15-H15ACl1		0.97	2.85	3.760(12)	155

symmetry	X-H [Å]	HY [Å]	XY [Å]	X-HY [°]
operation				
Intra	0.91	2.06	2.750(4)	132
1-x,2-y,-z	0.91	2.30	2.998(5)	133
	0.86(8)	2.31(7)	3.135(4)	160(8)
1-x,2-y,-z	0.97(6)	1.80(6)	2.757(5)	166(6)
1-x,2-y,-z	0.91	2.55	3.254(4)	135
1-x,2-y,-z	0.91	2.30	2.998(5)	133
	0.91	2.32	3.202(4)	165
	0.91	2.58	3.218(4)	128
1-x,1-y,-z	0.95	2.60	3.486(5)	155
	0.95	2.77	3.129(4)	103
	0.95	2.73	3.647(4)	155
	0.95	2.76	3.743(5)	172
1-x,1-y,-z	0.95	2.77	3.517(4)	133
2-x,1-y,-z	0.95	2.31	3.143(6)	146
	0.95	2.78	3.547(4)	135
	symmetry operation Intra 1-x,2-y,-z 1-x,2-y,-z 1-x,2-y,-z 1-x,2-y,-z 1-x,1-y,-z 1-x,1-y,-z 2-x,1-y,-z	symmetry X-H [Å] operation 0.91 Intra 0.91 1-x,2-y,-z 0.91 1-x,2-y,-z 0.97(6) 1-x,2-y,-z 0.91 1-x,2-y,-z 0.91 1-x,2-y,-z 0.91 1-x,2-y,-z 0.91 1-x,2-y,-z 0.91 1-x,2-y,-z 0.91 1-x,1-y,-z 0.95 0.95 0.95 1-x,1-y,-z 0.95 1-x,1-y,-z 0.95 1-x,1-y,-z 0.95 0.95 0.95 1-x,1-y,-z 0.95 0.95 0.95 1-x,1-y,-z 0.95 0.95 0.95	symmetry operationX-H [Å]HY [Å] operationIntra 0.91 2.06 $1-x,2-y,-z$ 0.91 2.30 $1-x,2-y,-z$ $0.97(6)$ $1.80(6)$ $1-x,2-y,-z$ $0.97(6)$ $1.80(6)$ $1-x,2-y,-z$ 0.91 2.55 $1-x,2-y,-z$ 0.91 2.30 $1-x,2-y,-z$ 0.91 2.32 0.91 2.58 $1-x,1-y,-z$ 0.95 2.60 0.95 2.77 0.95 2.77 $1-x,1-y,-z$ 0.95 2.77 $1-x,1-y,-z$ 0.95 2.77 $2-x,1-y,-z$ 0.95 2.78	symmetryX-H [Å]HY [Å]XY [Å]operationIntra 0.91 2.06 $2.750(4)$ $1-x,2-y,-z$ 0.91 2.30 $2.998(5)$ $0.86(8)$ $2.31(7)$ $3.135(4)$ $1-x,2-y,-z$ $0.97(6)$ $1.80(6)$ $2.757(5)$ $1-x,2-y,-z$ $0.97(6)$ $1.80(6)$ $2.757(5)$ $1-x,2-y,-z$ 0.91 2.55 $3.254(4)$ $1-x,2-y,-z$ 0.91 2.30 $2.998(5)$ 0.91 2.30 $2.998(5)$ 0.91 2.32 $3.202(4)$ 0.91 2.58 $3.218(4)$ $1-x,1-y,-z$ 0.95 2.77 $3.129(4)$ 0.95 2.77 $3.129(4)$ 0.95 2.76 $3.743(5)$ $1-x,1-y,-z$ 0.95 2.77 $3.517(4)$ $2-x,1-y,-z$ 0.95 2.78 $3.547(4)$

 $\textbf{Table S11}. Selected intermolecular X-H...Y interactions in [Cu(HQ-4)_2(CH_3OH)] \cdot ZnCl_4 \cdot CH_3OH.$

Table S12. Electrochemical data (potentials *vs.* NHE) for the iron and copper complexes formed with ligands **Q-1** and **Q-3** in comparison to the metal chlorides (very low peak intensity was obtained for the **Q-2**^a and **Q-4** complexes). (Glassy carbon working electrode, platinum counter electrode, Ag/AgCl/KCl (3 M) reference electrode; T = 25 °C; scan rate: 5 mV/s; I = 0.01 M (TBAClO₄); solvent: DMSO (H₂O content up to 1.64% for copper samples, 3.72% for iron samples); $c_{\text{ligand}} = 1.0$ mM)

	MCl _x	Q-1	Q-3
ligand signals			
$E_{\rm a}$ vs. NHE / V	-	-	-
$E_{\rm c}$ vs. NHE / V	-	-	-0.382 ^b
[FeL ₃] signals			
$E_{\rm a}$ vs. NHE / V	+0.435	-0.279	+0.126
$E_{\rm c}$ vs. NHE / V	+0.306	-0.367	-0.084
<i>E</i> _{1/2} <i>vs.</i> NHE / V	+0.381	-0.323	+0.021
$\Delta E (E_{1/2} \operatorname{complex} - E_{1/2} \operatorname{iron salt}) / \mathrm{V}$	-	-0.704	-0.360
[CuL ₂] signals			
$E_{\rm a}$ vs. NHE / V	+0.630	-0.431	-0.153
$E_{\rm c}$ vs. NHE / V	+0.521	-0.697	-0.257
<i>E</i> _{1/2} <i>vs.</i> NHE / V	+0.576	-0.564	-0.205
$\Delta E (E_{1/2} \text{ complex} - E_{1/2} \text{ copper salt}) / \text{V}$	-	-1.140	-0.781

^a E_c vs. NHE of the ligand **Q-2**: -0.214 V.

^b Broad peak.

Figure S1. Packing arrangements in two different views showing selected intermolecular interactions in **Q-3**. Crystal data and structure refinement parameter for all crystals of this study are given in Table S1.

Figure S2. Packing arrangements showing selected X-H...Y and π ... π interactions in Q-4·HCl·H₂O. Distance Cg(B)-Cg(B) is 3.7513(8) Å, Cg(C)-Cg(C) is 3.8244(11) and Cl1–Cl1 is 3.3506(7) Å. Crystal data and structure refinement parameter for all crystals of this study are given in Table S1.

Figure S3. UV-Vis absorption spectra recorded for the copper(II) – **Q-2** (1:2) (a) and copper(II) – **Q-4** (b) systems at different pH values. ($c_{\text{ligand}} = 50 \,\mu\text{M}$ (a) / 10 μ M (b); $T = 25.0 \,\text{°C}$; $I = 0.20 \,\text{M}$ KCl; $l = 2 \,\text{cm}$)

Figure S4. Ligand distribution at physiological pH at different metal-to-ligand ratios for iron(III) (a) and copper(II) (b) complexes. ($c_{\text{ligand}} = 5 \ \mu\text{M}$; $T = 25.0 \ ^{\circ}\text{C}$; $I = 0.20 \ \text{M} \ \text{KCl}$)

Figure S5. Experimental (black) and simulated (gray) EPR spectra recorded at 77 K ($c_{Cu} = 2 \text{ mM}$, $c_L = 4 \text{ mM}$) for copper(II) bis-ligand complexes of ligand **Q-1** (in toluene) and **Q-3** (in methanol) (a) and for **Q-2** and **Q-4** (in methanol) (a). EPR parameters are collected in Table S8.

Figure S6. Packing arrangements showing Cu1-O33 close distance by dashed lines and selected X-H...Y interactions in $[(Cu(HQ-2)_2)_2] \cdot (CH_3OH)_2 \cdot Cl_4 \cdot (H_2O)_2$.

Figure S7. Packing arrangements showing selected C-H...Cl and C-H...O interactions in $[Cu(Q-3)_2]$ ·Cl₂. Distance Cg(A)-Cg(C) is 3.428(6) Å, Cg(B)-Cg(C) is 3.753(6) Å. Crystal data and structure refinement parameter for all crystals of this study are given in Table S1.

Figure S8. Packing arrangements showing selected X-H...Y interactions in $[Cu(HQ-4)_2(CH_3OH)]\cdot ZnCl_4\cdot CH_3OH$. Distance C1-O2 is 3.301(3) Å. The shortest F1-F2 distance is 3.126(5) Å, and copper-copper distance is 3.8354(8) Å. Crystal data and structure refinement parameter for all crystals of this study are given in Table S1.

Figure S9. Cyclic voltammograms of the iron(III) – **Q-1** (a), iron(III) – **Q-2** (b), iron(III) – **Q-4** (c), copper(II) – **Q-1** (d), copper(II) – **Q-2** (e) and copper(II) – **Q-3** (f) systems. Ligand alone (black / deprotonated: grey), FeCl₃ (brown), iron complexes at the M:L ratios 1:1 (bordeaux), 1:2 (red) and 1:3 (orange), as well as for CuCl₂ (light blue), and copper complexes at the M:L ratios 1:1 (blue) and 1:2 (green). (Potentials measured against Ag/AgCl/KCl (saturated); $c_{\text{ligand}} = 1.0$ mM; solvent: DMSO (with a H₂O content of up to 1.6% for copper samples and 3.7% for iron samples); I = 0.01 M (TBAClO₄); T = 25 °C; scan rate = 5 mV/s)

Figure S10. Time-dependent UV–Vis spectra of the iron(III) complexes of **Q-1** (b), **Q-2** (b), **Q-3** (c) and **Q-4** (d) upon addition of 2.5 equivalents of ASC at pH 6.87. Black dashed lines denote the initial spectra before addition of ASC, grey dashed lines the spectra upon addition of H₂O₂. ($c_{iron(III)} = 200 \mu$ M; $c_{ligand} = 200 \mu$ M; $c_{ASC} = 500 \mu$ M; $T = 25.0 \degree$ C; I = 0.10 M KCl)

Figure S11. Absorbance changes (as A/A₀) at the λ_{max} of the copper(II) complexes upon reaction with 2.5 equivalents of GSH plotted against the time for the complexes of **Q-1** (•), **Q-2** (×), **Q-3** (**A**) and **Q-4** (**•**) at pH 7.40. ($c_{copper(II)} = 100 \mu$ M; $c_{Iigand} = 100 \mu$ M; $c_{GSH} = 250 \mu$ M; $T = 25.0 \degree$ C; I = 0.10 M KCl)

Figure S12. ¹H NMR spectrum of 6-chloro-3-(2-fluorobenzyl)-3,4-dihydro-2H-[1,3]oxazino[5,6-h]quinoline (NSC297366) in DMSO- d_6 .

Figure S13. ¹³C NMR spectrum of 6-chloro-3-(2-fluorobenzyl)-3,4-dihydro-2H-[1,3]oxazino[5,6-h]quinoline in DMSO- d_6 .

Figure S14. ¹H NMR spectrum of 5-chloro-7-((2-fluorobenzylamino)methyl)quinolin-8-ol hydrochloride (**Q-4**·HCl) in DMSO- d_6 .

Figure S15. ¹³C NMR spectrum of 5-chloro-7-((2-fluorobenzylamino)methyl)quinolin-8-ol hydrochloride (Q-4·HCl) in DMSO- d_6 .